Some homological property of simply connected bimodule problems with quasi multiplicative basis

Vyacheslav Babych, Nataliya Golovashchuk

Let \mathcal{C} be the considered in [1] class of a faithful simply connected finite dimensional bimodule problems $\mathcal{A}=(\mathrm{K}, \mathrm{V})$ with nilpotent radical over an algebraically closed field \mathbb{k} with a basic category K and a faithful finite dimensional K -bimodule V . Similarly to $[\mathbf{2 , 3}$], the quasi multiplicative basis Γ is constructed for such bimodule problem of bounded representative type.

According to $[\mathbf{1}], \Gamma=\Gamma(\mathcal{A})=\left(\Gamma_{0}, \Gamma_{1}=\Gamma_{1}^{0} \cup \Gamma_{1}^{1}, s, t\right)$ is a bigraph with a set of vertices Γ_{0}, a set of arrows Γ_{1}^{i} of degree $i \in\{0,1\}$, and the maps $s, t: \Gamma_{1} \rightarrow \Gamma_{0}$ matching an initial $s(a)$ and a terminal $t(a)$ vertex for any arrow $a \in \Gamma_{1}$.

Denote by $\mathbb{L}=\mathbb{L}(\Gamma) \simeq \mathbb{Z}^{\left|\Gamma_{0}\right|}$ a free lattice of the rank $\left|\Gamma_{0}\right|$, freely generated over \mathbb{Z} by the system $\left\{e(i) \in \mathbb{Z}^{\left|\Gamma_{0}\right|} \mid i \in \Gamma_{0}\right\}$ such that $e(i)_{j}=\delta_{i j}$.

Given $x=\sum_{i \in \Gamma_{0}} x_{i} e(i), y=\sum_{i \in \Gamma_{0}} y_{i} e(i) \in \mathbb{L}$ define the integer non symmetric bilinear form $\langle-,-\rangle: \mathbb{L} \times \mathbb{L} \longrightarrow \mathbb{Z}$ by setting $\langle x, y\rangle=\sum_{i \in \Gamma_{0}} x_{i} y_{i}-\sum_{a \in \Gamma_{1}^{0}} x_{s(a)} y_{t(a)}+\sum_{a \in \Gamma_{1}^{1}} x_{s(a)} y_{t(a)}$. The equality $\chi(x)=\langle x, x\rangle$ denotes the integer Tits quadratic form $\chi: \mathbb{L} \longrightarrow \mathbb{Z}$.

Denote by $\mathcal{R}=\mathcal{R}(\mathcal{A})$ the category of representations of bimodule problem \mathcal{A}, and let $\underline{\operatorname{dim}} X=\sum_{i \in \Gamma_{0}} \operatorname{dim} X_{i} e(i) \in \mathbb{L}$ be the dimension vector of $X \in \mathcal{R}(\mathcal{A})$. Then $\langle\underline{\operatorname{dim}} X, \underline{\operatorname{dim}} Y\rangle=$ $\operatorname{dim} \operatorname{Hom}_{\mathfrak{k}}(X, Y)-\operatorname{dim} \operatorname{Ext}_{\mathfrak{k}}^{1}(X, Y)$. A representation $X \in \mathcal{R}(\mathcal{A})$ is called brick if $\operatorname{Hom}_{\mathfrak{k}}(X, X)=$ $\operatorname{End}_{\mathfrak{k}}(X)=\mathbb{k} \cdot \mathbf{1}_{X}$. Thus a brick is indecomposable. If X is a brick then $\underline{\operatorname{dim} X}$ is a root of χ and $\operatorname{Ext}_{\mathrm{k}}^{1}(X, X)=0$.

Theorem. Let $\mathcal{A} \in \mathcal{C}$ be a simply connected bimodule problem having weakly positive Tits form χ. Then \mathcal{A} is of finite representation type, every indecomposable representation is a brick, and for every pair $X_{1}, X_{2} \in \mathcal{R}(\mathcal{A})$ of representations

$$
\begin{aligned}
\operatorname{dim} \operatorname{Hom}\left(X_{1}, X_{2}\right) & =\max \left\{0, \quad\left\langle\underline{\operatorname{dim}} X_{1}, \underline{\operatorname{dim}} X_{2}\right\rangle\right\} \\
\operatorname{dim} \operatorname{Ext}\left(X_{1}, X_{2}\right) & =\max \left\{0,-\left\langle\underline{\operatorname{dim}} X_{1}, \underline{\operatorname{dim}} X_{2}\right\rangle\right\}
\end{aligned}
$$

In particular, $\operatorname{dim} \operatorname{Hom}\left(X_{1}, X_{2}\right) \cdot \operatorname{dim} \operatorname{Ext}\left(X_{1}, X_{2}\right)=0$.

References

1. V. Babych, N. Golovashchuk, S. Ovsienko. Generalized multiplicative bases for one-sided bimodule problems // Algebra and Discrete Mathematics, Vol. 12 (2011), No. 2, 1-24.
2. Bautista R., Gabriel P., Roiter A. V., Salmeron L. Representation-finite algebras and multiplicative bases // Invent. math. - 1985. - 81 - p. 217-286.
3. Golovashuk N. S. Covering of a class of free matrix problems // Dokl. AN USSR, Ser. A. - 1987. - 10. p. 3-5. (in russian)

Contact information

Vyacheslav Babych

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Email address: vyacheslav.babych@gmail.com
URL: https://sites.google.com/view/cgtds/

Nataliya Golovashchuk

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Email address: golovash@gmail.com
Key words and phrases. Bimodule problem, Tits form, representation type

The Generalized Weyl Poisson algebras and their Poisson simplicity criterion

Volodymyr Bavula

A new large class of Poisson algebras, the class of generalized Weyl Poisson algebras, is introduced. It can be seen as Poisson algebra analogue of generalized Weyl algebras. A Poisson simplicity criterion is given for generalized Weyl Poisson algebras and an explicit description of the Poisson centre is obtained. Many examples are considered.

References

1. V. V. Bavula, The Generalized Weyl Poisson algebras ans their Poisson simplicity criterion, arXiv:1902.00695.

Contact information

Volodymyr Bavula

School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
Email address: v.bavula@sheffield.ac.uk
Key words and phrases. The Generalized Weyl Poisson algebras, a Poisson simplicity criterion, a Poisson ideal, the classical polynomial Poisson algebra

The specialized characters of the representation of the Lie algebra $s l_{3}$ in terms of q - and (q, p)-numbers

Leonid Bedratyuk, Ivan Kachuryk

Let Γ_{λ} be the standard irreducible complex representation of $\mathfrak{s l}_{3}$ with the highest weight $\lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \mathbb{Z}^{2}, \operatorname{dim} \Gamma_{\lambda}=\left(\lambda_{1}+1\right)\left(\lambda_{2}+1\right)\left(\lambda_{1}+\lambda_{2}\right) / 2$.

Denote by Λ the weight lattice of all finite dimensional representation of $\mathfrak{s l}_{3}$, and let $\mathbb{Z}(\Lambda)$ be their group ring. The ring $\mathbb{Z}(\Lambda)$ is free \mathbb{Z}-module with the basis elements $e(\lambda), \lambda=\left(\lambda_{1}, \lambda_{2}\right) \in \Lambda$, $e(\lambda) e(\mu)=e(\lambda+\mu), e(0)=1$. Let Λ_{λ} be the set of all weights of the representation Γ_{λ}. Then the formal character $\operatorname{Char}\left(\Gamma_{\lambda}\right)$ is defined as formal sum $\sum_{\mu \in \Lambda_{\lambda}} n_{\lambda}(\mu) e(\mu) \in \mathbb{Z}(\Lambda)$, here $n_{\lambda}(\mu)$ is the multiplicities of the weight μ in the representation Γ_{λ}. By replacing $e(m, n):=q^{n} p^{m}$ we obtain the specialized expression for the character of $\operatorname{Char}\left(\Gamma_{(n, m)}\right) \equiv[n, m]_{q, p}$.

We establish several relations between the specialized characters $[n, m]_{q p}$ and the quantum (q, p)-numbers

$$
[r]_{q, p}=\frac{q^{r}-p^{-r}}{q-p^{-1}}
$$

and in some cases between different types of q-numbers.

