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Some homological property of simply connected

bimodule problems with quasi multiplicative basis

Vyacheslav Babych, Nataliya Golovashchuk

Let 𝒞 be the considered in [1] class of a faithful simply connected finite dimensional bimodule
problems 𝒜 = (K,V) with nilpotent radical over an algebraically closed field k with a basic
category K and a faithful finite dimensional K-bimodule V. Similarly to [2, 3], the quasi
multiplicative basis Γ is constructed for such bimodule problem of bounded representative type.

According to [1], Γ = Γ(𝒜) = (Γ0,Γ1 = Γ0
1 ∪ Γ1

1, 𝑠, 𝑡) is a bigraph with a set of vertices Γ0, a
set of arrows Γ𝑖

1 of degree 𝑖 ∈ {0, 1}, and the maps 𝑠, 𝑡 : Γ1 → Γ0 matching an initial 𝑠(𝑎) and a
terminal 𝑡(𝑎) vertex for any arrow 𝑎 ∈ Γ1.

Denote by L = L(Γ) ≃ Z|Γ0| a free lattice of the rank |Γ0|, freely generated over Z by the
system {𝑒(𝑖) ∈ Z|Γ0| | 𝑖 ∈ Γ0} such that 𝑒(𝑖)𝑗 = 𝛿𝑖𝑗.

Given 𝑥 =
∑︀

𝑖∈Γ0
𝑥𝑖𝑒(𝑖), 𝑦 =

∑︀
𝑖∈Γ0

𝑦𝑖𝑒(𝑖) ∈ L define the integer non symmetric bilinear form
⟨−,−⟩ : L × L −→ Z by setting ⟨𝑥, 𝑦⟩ =

∑︀
𝑖∈Γ0

𝑥𝑖𝑦𝑖 −
∑︀

𝑎∈Γ0
1
𝑥𝑠(𝑎)𝑦𝑡(𝑎) +

∑︀
𝑎∈Γ1

1
𝑥𝑠(𝑎)𝑦𝑡(𝑎). The

equality 𝜒(𝑥) = ⟨𝑥, 𝑥⟩ denotes the integer Tits quadratic form 𝜒 : L −→ Z.
Denote by ℛ = ℛ(𝒜) the category of representations of bimodule problem 𝒜, and let

dim𝑋 =
∑︀

𝑖∈Γ0
dim𝑋𝑖𝑒(𝑖) ∈ L be the dimension vector of 𝑋 ∈ ℛ(𝒜). Then ⟨dim𝑋, dim𝑌 ⟩ =

dimHomk(𝑋, 𝑌 )−dim Ext1k(𝑋, 𝑌 ). A representation 𝑋 ∈ ℛ(𝒜) is called brick if Homk(𝑋,𝑋) =
Endk(𝑋) = k · 1𝑋 . Thus a brick is indecomposable. If 𝑋 is a brick then dim𝑋 is a root of 𝜒
and Ext1k(𝑋,𝑋) = 0.

Theorem. Let 𝒜 ∈ 𝒞 be a simply connected bimodule problem having weakly positive Tits
form 𝜒. Then 𝒜 is of finite representation type, every indecomposable representation is a brick,
and for every pair 𝑋1, 𝑋2 ∈ ℛ(𝒜) of representations

dimHom(𝑋1, 𝑋2) = max{ 0, ⟨dim𝑋1, dim𝑋2 ⟩},
dim Ext(𝑋1, 𝑋2) = max{ 0, −⟨dim𝑋1, dim𝑋2 ⟩}.

In particular, dimHom(𝑋1, 𝑋2) · dim Ext(𝑋1, 𝑋2) = 0.
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The Generalized Weyl Poisson algebras and their Poisson

simplicity criterion

Volodymyr Bavula

A new large class of Poisson algebras, the class of generalized Weyl Poisson algebras, is
introduced. It can be seen as Poisson algebra analogue of generalized Weyl algebras. A Poisson
simplicity criterion is given for generalized Weyl Poisson algebras and an explicit description of
the Poisson centre is obtained. Many examples are considered.
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The specialized characters of the representation of the Lie

algebra 𝑠𝑙3 in terms of 𝑞- and (𝑞, 𝑝)-numbers

Leonid Bedratyuk, Ivan Kachuryk

Let Γ𝜆 be the standard irreducible complex representation of sl3 with the highest weight
𝜆 = (𝜆1, 𝜆2) ∈ Z2, dim Γ𝜆 = (𝜆1 + 1)(𝜆2 + 1)(𝜆1 + 𝜆2)/2.

Denote by Λ the weight lattice of all finite dimensional representation of sl3, and let Z(Λ) be
their group ring. The ring Z(Λ) is free Z-module with the basis elements 𝑒(𝜆), 𝜆 = (𝜆1, 𝜆2) ∈ Λ,
𝑒(𝜆)𝑒(𝜇) = 𝑒(𝜆+ 𝜇), 𝑒(0) = 1. Let Λ𝜆 be the set of all weights of the representation Γ𝜆. Then
the formal character Char(Γ𝜆) is defined as formal sum

∑︀
𝜇∈Λ𝜆

𝑛𝜆(𝜇)𝑒(𝜇) ∈ Z(Λ), here 𝑛𝜆(𝜇)

is the multiplicities of the weight 𝜇 in the representation Γ𝜆. By replacing 𝑒(𝑚,𝑛) := 𝑞𝑛𝑝𝑚 we
obtain the specialized expression for the character of Char(Γ(𝑛,𝑚)) ≡ [𝑛,𝑚]𝑞,𝑝.

We establish several relations between the specialized characters [𝑛,𝑚]𝑞𝑝 and the quantum
(𝑞, 𝑝)-numbers

[𝑟]𝑞,𝑝 =
𝑞𝑟 − 𝑝−𝑟

𝑞 − 𝑝−1
,

and in some cases between different types of 𝑞-numbers.
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