References

1. P. Appell, Sur une classe de polynomes [On one class of polynomials], Annales scientifiques de l'E.N.S. 2e serie, tome 9, 1880, 119-144.
2. Y. Yang, C. Micek, Generalized Pascal functional matrix and its applications, Linear Algebra Appl. 423 (2007), 230-245.
3. F. A. Costabile, E. Longo. A determinantal approach to Appell polynomials, Journal of Computational and Applied Mathematics Volume 234, Issue 5, 1 July 2010, 1528-1542.
4. M. Hazewinkel, Appell polynomials, Encyclopedia of Mathematics, Springer Science+Business Media B.V. / Kluwer Academic Publishers, (2001) [1994]. ISBN 978-1-55608-010-4.
5. H. W. Gould, A. T. Hopper Operational formulas connected with two generalizations of Hermite Polynomials, Duke Math. J., 29 (1962), 51-62.
6. H. M. Srivastava, H. L. Manocha, A treatise on generating functions, Horwood, 1984, 569 p.
7. Y. Ben Cheikh, H. Chaggara, Connection problems via lowering operators, Journal of Computational and Applied Mathematics Volume 178, Issues 1-2, 1 June 2005, 45-61.

Contact information

Leonid Bedratyuk

Department of Computer Engineering and Systems Programming, Khmelnytskyi National University, Khmelnytskyi, Ukraine
Email address: leonid.uk@gmail.com

Nataliia Luno

Department of Mathematics and Computer Science, Vasyl' Stus Donetsk National University, Vinnytsya, Ukraine
Email address: nlunio@ukr.net

Key words and phrases. Appell polynomials, Appell sequeence, hypergeometric function, generalized Hermite polynomials

Tensor products of indecomposable integral matrix representations of the symmetric group of third degree

Diana Biletska, Ihor Shapochka

Let S_{3} be the symmetric group of third degree with generators a, b and relations: $a^{2}=b^{3}=e$, $b a=a b^{2}$, where e is the identity of S_{3}. The result, which we have obtained, is based on the classification of all non-equivalent indecomposable integral matrix representations of the group S_{3}, obtained by L. A. Nazarova and A. V. Roiter [1]. The following representations of the group S_{3} over the ring \mathbb{Z} of rational integers presents all indecomposable integral pairwise
non-equivalent representations of the group S_{3} of the degree not greater then 3:

$$
\begin{gathered}
\Gamma_{1}: a \rightarrow 1, b \rightarrow 1 ; \quad \Gamma_{2}: a \rightarrow-1, b \rightarrow 1 ; \quad \Gamma_{3}: a \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), b \rightarrow\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right) ; \\
\Gamma_{4}: a \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad b \rightarrow\left(\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right) ; \quad \Gamma_{5}: a \rightarrow\left(\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right), \quad b \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ; \\
\Gamma_{6}: a \rightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), b \rightarrow\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right) ; \\
\Gamma_{7}: a \rightarrow\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), b \rightarrow\left(\begin{array}{rrr}
1 & 1 & 0 \\
0 & -1 & -1 \\
0 & -1 & 0
\end{array}\right) .
\end{gathered}
$$

Theorem 1. Let Δ and Θ be an indecomposable integral representations of the group S_{3}. The tensor product $\Delta \otimes \Theta$ of the representations Δ and Θ is indecomposable if and only if one of the following conditions holds:

1) one of the representations Δ and Θ has degree 1;
2) both of the representations Δ and Θ are irreducible;
3) one of the representations Δ and Θ has degree 2 and another has degree 3 .

References

1. L. A. Nazarova and A. V. Roiter, Целочисленнье представления симметрической группи третъей степени [Integral representations of the symmetric group of third degree], Ukr. Math. J. XIV, №3 (1962), 271-288.

Contact information

Diana Biletska

Department of Algebra, Uzhhorod National University, Uzhhorod, Ukraine
Email address: biletskadiana27@gmail.com

Ihor Shapochka

Department of Algebra, Uzhhorod National University, Uzhhorod, Ukraine
Email address: ihor.shapochka@uzhnu.edu.ua
Key words and phrases. Matrix representation, tensor product

Diagonability of idempotent matrices over duo rings

Andriy Bilous

It is proved that a idempotent matrix over PT duo ring R is diagonalizable under a similarity transformation.

Definition 1. A ring R is said to be a duo ring if every its left or right ideal is two sided.
Theorem 1. Let R be a duo ring and A be an $n \times n$ idempotent matrix over R. If there exist invertible matrices P and Q such that $P A Q$ is a diagonal matrix, then there is an invertible matrix U such that $U A U^{-1}$ is a diagonal matrix.

Definition 2. A ring R is a $P T$ (projective trivial) ring if every idempotent matrix over R is similar to a diagonal matrix.

