On classification of matrix representations of monoids of the fourth order

VITALIY M. BONDARENKO, JAROSLAV ZATSIKHA

We describe canonical forms of the matrix representations of monoids of the fourth order over an arbitrary field and classify (up to equivalence) all their indecomposable representations. We also indicate criteria on representation type.

CONTACT INFORMATION

VITALIY M. BONDARENKO
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
Email address: vitalij.bond@gmail.com

JAROSLAV ZATSIKHA
Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
Email address: zatsikha@gmail.com

Key words and phrases. Semigroup, field, matrix, representation, canonical form, classification

Reducibility of canonical t-cyclic monomial matrices over commutative local rings

MARIYA BORTOSH

We study canonical t-cyclic matrices over commutative local rings. Let K be a commutative local ring with radical $R \neq 0$ and let $t \in R$ such that $t^m = 0$, $t^{m-1} \neq 0$.

A cyclic matrix of the form

$$A = M_t(\pi) = \begin{pmatrix}
0 & \ldots & 0 & a_n \\
0 & \ldots & 0 & 0 \\
\vdots & \ddots & \vdots & \vdots \\
0 & \ldots & a_{n-1} & 0
\end{pmatrix},$$

is called canonical cyclic. The sequence $\pi = (a_1, \ldots, a_{n-1}, a_n)$ is called the defining sequence of A. If all elements a_i have the form t^{s_i} ($t \in K$), where $s_i \geq 0$ ($i = 1, 2, \ldots, n$), the matrix A is called canonical t-cyclic [3].

THEOREM 1. Any canonical t-cyclic matrix over K with defining sequence containing subsequence $(t^i, t^{p+q}, t^j, 1)$, where $i + q \geq m$, $j + p \geq m$, is reducible.

COROLLARY 1. Any canonical t-cyclic matrix over K with defining sequence containing subsequence $(t^{m-1}, t^2, t^{m-1}, 1)$ is reducible.

References