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Theorem 1 (see [1], proposition 3). Let 𝑆 be a finite semigroup. If the inverse monoid
of local automorphisms 𝐿𝐴𝑢𝑡(𝑆) is a congruence-permutable, then the semigroup 𝑆 is either a
group or a nilsemigroup, or a band.

Theorem 2. Let 𝑆 be a finite band or a finite nilsemigroup. The following statements are
equivalent:

(a) 𝐿𝐴𝑢𝑡(𝑆) is a congruence-permutable inverse semigroup;
(b) 𝐿𝐴𝑢𝑡(𝑆) is a ∆-semigroup.

The following theorem was proved in [2].

Theorem 3. Let 𝑆 be a finite band. The inverse monoid 𝐿𝐴𝑢𝑡(𝑆) is a congruence-permutable
if and only if 𝑆 is:

(1) either a linearly ordered semilattice;
(2) or a primitive semilattice;
(3) or a semigroup of right zeros;
(4) or a semigroup of left zeros.

A finite nilsemigroups for which the inverse monoid of local automorphisms is a congruence-
permutable semigroup describe in [3].

Theorem 4. Let 𝐺 be a finite group. The inverse monoid 𝐿𝐴𝑢𝑡(𝐺) is a ∆-semigroup if
and only if 𝐺 is:

(1) either a group of prime order 𝑝, where 𝑝− 1 = 2𝑘 for some nonnegative integer 𝑘;
(2) or an elementary Abelian 2-group of order 2𝑛, where 𝑛 ≥ 2.
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On conditions for the Brandt semigroup to be non

isomorphic to the variant

Oleksandra Desiateryk

Proposition 1. Let a variant (𝑆, *𝑎) be isomorphic to the Brandt semigroup. Then the
semigroup 𝑆 is 0-simple.

Since we are interested in semigroups isomorphic to Brandt semigroup let us further consider
the 𝑆 as a 0-simple semigroup.
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Proposition 2. Let a variant (𝑆, *𝑎) be isomorphic to the finite Brandt semigroup. Then
𝑆 is finite complete 0-simple semigroup.

From the [1] we have that if a variant (𝑆, *𝑎) is 0-simple, then 𝑆 is 0-simple. In the [2] we
can find that a semigroup 𝑆 is complete 0-simple if and only if the semigroup 𝑆 does not contain
bicyclic semigroup.

Let us consider a variant (𝑆, *𝑎) isomorphic to the finite Brandt semigroup. Since by the
proposition 2 the semigroup 𝑆 is finite complete 0-simple. Then let us consider more general
case when the semigroup 𝑆 is complete 0-simple. Then by the Rees theorem [3] a semigroup
𝑆 is isomorphic to a Rees matrix semigroup over the group with zeroℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ). Then
(𝑆, *𝑎) ∼= (ℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ), *𝐴𝑖𝑗

) The next proposition is obvious.

Proposition 3. A variant of the semigroup ℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ) generated by any non zero
Rees matrix 𝐴𝑖𝑗 is a Rees matrix semigroup with sandwich matrix 𝑄 = 𝑃 · 𝐴𝑖𝑗 · 𝑃 .

Proposition 4. Let matrix 𝑄 have a zero on 𝑙𝑘 position then all 𝑘 column or 𝑙 row is zero,
or in the same time 𝑘 column and 𝑙 row.

We proved the next important proposition.

Proposition 5. Any variant (ℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ), *𝐴𝑖𝑗
) of Rees matrix semigroup is not iso-

morphic to Rees matrix semigroup with unit sandwich matrix ℳ0((𝐺′)0;𝐾,𝐾;△).

Theorem 1. Let semigroup 𝑆 does not contain bicyclic subsemigroup and 𝑎 ∈ 𝑆, then (𝑆, *𝑎)
is not a Brandt semigroup.

Since a finite semigroup does not contain a bicyclic semigroup we have the next corollary.

Corollary 1. Finite Brand semigroup is not a variant of any semigroup.

For the semigroup which has a bicyclic subsemigroup we have solved the case when sandwich
element belongs to the bicyclic subsemigroup.

Theorem 2. Let a semigroup 𝑆 contain subsemigroup Bi, and 𝑎 ∈ Bi. Then the variant
(𝑆, *𝑎) is not a Brandt semigroup.
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Quasigroups with some Bol-Moufang type identities

Natalia Didurik, Victor Shcherbacov

Groupoid (𝑄, *) is called a quasigroup, if the following conditions are true [1]: (∀𝑢, 𝑣 ∈
𝑄)(∃!𝑥, 𝑦 ∈ 𝑄)(𝑢 * 𝑥 = 𝑣& 𝑦 * 𝑢 = 𝑣).
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