Corollary 1. Transforming matrices U and V from (2) have the following upper unitriangular form

$$U = \begin{bmatrix} I & -Y \\ 0 & I \end{bmatrix}, \quad V = \begin{bmatrix} I & -X \\ 0 & I \end{bmatrix},$$

where matrices X and Y have the same triangular form as matrices A, B and C if and only if $(a_{ii}, b_{ii})|c_{ii}$ for all $i = 1, 2, \ldots, n$.

References

Contact Information

Nataliia Dzhaliuk
Department of Algebra,Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine, L’viv, Ukraine
Email address: nataliya.dzhalyuk@gmail.com

Key words and phrases. The Sylvester matrix equation, linear matrix equation, solution, triangular matrix

Some notes on orthogonality

Iryna Fryz

A tuple of n-ary operations f_1, \ldots, f_k ($n \geq 2, k \leq n$) defined on a set Q ($m := |Q|$) is called orthogonal [1], if for arbitrary $b_1, \ldots, b_k \in Q$ the system $\{f_i(x_1, \ldots, x_n) = b_i\}_{i=1}^k$ has exactly m^{n-k} solutions.

Let f be an n-ary operation on Q and

$$\delta := \{i_1, \ldots, i_k\} \subset \overline{1, n} := \{1, \ldots, n\}, \quad \{j_1, \ldots, j_{n-k}\} := \overline{1, n} \setminus \delta, \quad \bar{a} := (a_{j_1}, \ldots, a_{j_{n-k}}).$$

An operation $f_{(\bar{a}, \delta)}$ which is defined by

$$f_{(\bar{a}, \delta)}(x_{i_1}, \ldots, x_{i_k}) := f(y_1, \ldots, y_n),$$

where $y_i := \begin{cases} x_i, & \text{if } i \in \delta, \\ a_i, & \text{if } i \notin \delta. \end{cases}$ is called an (\bar{a}, δ)-retract or a δ-retract of f. Operations $f_{1:(\bar{a}_1, \delta)}, \ldots, f_{k:(\bar{a}_k, \delta)}$ are called similar δ-retracts of n-ary operations f_1, \ldots, f_k, if $\bar{a}_1 = \cdots = \bar{a}_k$. A k-tuple of n-ary operations is called δ-retractly orthogonal [4], if all tuples of similar δ-retracts of these operations are orthogonal.

The notion of perpendicularity of the maximal type from [3] can be defined using the definition of retract orthogonality: n-ary operations g and h are called perpendicular of the type $(\iota, \iota; m)$, if they are δ-retractly orthogonal for all δ such that $|\delta| = 2$ and $m \in \delta$. The results from [5] imply the following statement.

Proposition 1. If n-ary operations g and h are δ-perpendicular of the type $(\iota, \iota; m)$, $m \in \overline{1, n}$, then they are δ-retractly orthogonal for all $\delta \subset \overline{1, n}$, where $|\delta| > 1$ and $m \in \delta$.

The relationships between retract orthogonality and strong orthogonality was described by G.B. Belyavskaya and G.L. Mullen [2] and the relationships between retract orthogonality and orthogonality was studied in [5].
Proposition 2. Let g and h be n-ary quasigroups. The following statements are equivalent:

1. g and h are strongly orthogonal;
2. g and h are perpendicular of the type $(i, i; m)$ for all $m \in \overline{1,n}$;
3. g and h are δ-retractly orthogonal for all $\delta \subset \overline{1,n}$;
4. for an arbitrary $m \in \overline{1,n}$ operation $g \oplus h$ is invertible, where
 \[(g \oplus h)(x_1, \ldots, x_n) := g(x_1, \ldots, x_{m-1}, h(x_1, \ldots, x_n), x_{m+1}, \ldots, x_n).\]

References

Contact information

Iryna Fryz
Vasyl’ Stus Donetsk National University, Vinnytsia, Ukraine
Email address: iryna.fryz@ukr.net

Key words and phrases. Orthogonality, perpendicularity, strong orthogonality

Diagonal reduction of matrices over commutative semihereditary Bezout rings

Andrii Gatalevych

All rings considered will be commutative and have identity. Recently there has been some interest in the polynomial ring $R[x]$, where R is a von Neumann regular ring. Such a ring is a Bezout ring, semihereditary ring, and so Hermite ring. Thus, it is natural to ask whether or not $R[x]$ is an elementary divisor ring. This question is answered affirmative in [3]. It is an open problem whether or not every Bezout domain is an elementary divisor ring and more generally: whether or not every semihereditary Bezout ring is an elementary divisor ring.

We obtain a complete characterization of semihereditary elementary divisor ring through its homomorphic images.

Mc Adam S. and Swan R. G. studied comaximal factorization in commutative rings [2]. Following them, we give the following definitions.

Definition 1. A nonzero element a of a ring R is called inpseudo-irreducible if for any representation $a = b \cdot c$ we have $bR + cR = R$.

Definition 2. An element a of a ring R is called pseudo-irreducible if for any representation $a = b \cdot c$, where $b, c \not\in U(R)$, we have $bR + cR \neq R$.

Other definitions can be found in the articles [1, 4].

Theorem 1. Let R be a Bezout ring of stable range 2. A regular element $a \in R$ is inpseudo-irreducible if R/aR is a von Neumann regular ring.