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Proposition 2. Let 𝑔 and ℎ be 𝑛-ary quasigroups. The following statements are equivalent:
(1) 𝑔 and ℎ are strongly orthogonal;
(2) 𝑔 and ℎ are perpendicular of the type (𝜄, 𝜄;𝑚) for all 𝑚 ∈ 1, 𝑛;
(3) 𝑔 and ℎ are 𝛿-retractly orthogonal for all 𝛿 ⊂ 1, 𝑛;
(4) for an arbitrary 𝑚 ∈ 1, 𝑛 operation 𝑔 ⊕

𝑚
ℎ is invertible, where

(𝑔 ⊕
𝑚
ℎ)(𝑥1, . . . , 𝑥𝑛) := 𝑔(𝑥1, . . . , 𝑥𝑚−1, ℎ(𝑥1, . . . , 𝑥𝑛), 𝑥𝑚+1, . . . , 𝑥𝑛).
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Diagonal reduction of matrices over commutative

semihereditary Bezout rings

Andrii Gatalevych

All rings considered will be commutative and have identity. Recently there has been some
interest in the polynomial ring 𝑅[𝑥], where 𝑅 is a von Neumann regular ring. Such a ring is a
Bezout ring, semihereditary ring, and so Hermite ring. Thus, it is natural to ask whether or not
𝑅[𝑥] is an elementary divisor ring. This question is answered affirmative in [3]. It is an open
problem whether or not every Bezout domain is an elementary divisor ring and more generally:
whether or not every semihereditary Bezout ring is an elementary divisor ring.

We obtain a complete characterization of semihereditary elementary divisor ring through its
homomorphic images.

Mc Adam S. and Swan R. G. studied comaximal factorization in commutative rings [2].
Following them, we give the following definitions.

Definition 1. A nonzero element 𝑎 of a ring 𝑅 is called inpseudo-irreducible if for any
representation 𝑎 = 𝑏 · 𝑐 we have 𝑏𝑅 + 𝑐𝑅 = 𝑅.

Definition 2. An element 𝑎 of a ring 𝑅 is called pseudo-irreducible if for any representation
𝑎 = 𝑏 · 𝑐, where 𝑏, 𝑐 /∈ 𝑈(𝑅), we have 𝑏𝑅 + 𝑐𝑅 ̸= 𝑅.

Other definitions can be found in the articles [1, 4].

Theorem 1. Let 𝑅 be a Bezout ring of stable range 2. A regular element 𝑎 ∈ 𝑅 is
inpseudo-irreducible iff 𝑅/𝑎𝑅 is a von Neumann regular ring.
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Theorem 2. Let 𝑅 be a Bezout ring of stable range 2. A regular element 𝑎 ∈ 𝑅 is
pseudo-irreducible iff 𝑅/𝑎𝑅 is an indecomposable ring.

Theorem 3. Let 𝑅 be a Bezout ring of stable range 2. A regular element 𝑎 ∈ 𝑅 is an
adequate element iff 𝑅/𝑎𝑅 is a semiregular ring.

Theorem 4. Let 𝑅 be a Bezout ring of stable range 2 and of Gelfand range 1. Then 𝑅 is
an elementary divisor ring.

Theorem 5. Let 𝑅 be a Bezout domain. Then the following statements are equivalent
1) 𝑅 is an elementary divisor ring.
2) 𝑅 is a ring of Gelfand range 1.

Theorem 6. Let 𝑅 be a semihereditary PM Bezout ring. Then 𝑅 is an elementary divisor
ring.
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Bezout rings with nonzero principal Jacobson radical

Andrii Gatalevych, Anatolii Dmytruk

All rings considered are commutative with 1 ̸= 0. Let us consider the example of M. Henriksen
𝑅 = {𝑧0 + 𝑎1𝑥+ 𝑎2𝑥+ . . . | 𝑧0 ∈ 𝑍, 𝑎𝑖 ∈ 𝑄} [1]. It has been constructed as an example of a
commutative Bezout domain, which is an elementary divisor ring and is not an adequate ring.
We note that its Jacobson radical is a nonzero prime ideal, which is not a principal ideal and
stable range of the ring 𝑅 equals 2. The issue arises about the structure of a Bezout domain in
which a Jacobson radical is a nonzero principal ideal.

Definition 1. A ring 𝑅 is called a Bezout ring if its every finitely generated ideal is
principal.

Definition 2. A ring 𝑅 is called a ring of stable range 1, if for any 𝑎, 𝑏 ∈ 𝑅 such that
𝑎𝑅 + 𝑏𝑅 = 𝑅, there exists such an element 𝑦 ∈ 𝑅 that (𝑎+ 𝑏𝑦)𝑅 = 𝑅 [2].

Theorem 1. Let 𝑅 be a commutative Bezout domain in which a Jacobson radical 𝐽(𝑅) is a
nonzero principal ideal. Then 𝑅 is a ring of stable range 1.

Theorem 2. Let 𝑅 be a commutative Bezout domain, and let for the element 𝑎 ∈ 𝑅∖{0}, a
Jacobson radical of the factor ring 𝐽(𝑅/𝑎𝑅) is a nonzero principal ideal. Then the element 𝑎 is
contained only in the finite number of maximal ideals that are principal.
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