Anatoliy Petravchuk

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Email address: apetrav@gmail.com
Key words and phrases. Lie algebra, polynomial ring, derivation, rank of algebra, general affine Lie algebra

On eigenvalues of random partial wreath product

Eugenia Kochubinska, Olena Krytska

Partial wreath n-th power of symmetric inverse semigroup \mathcal{I}_{d} is a semigroup defined recursively by

$$
\mathcal{P}_{n}=\left(\mathcal{P}_{n-1}\right) \chi_{p} \mathcal{I}_{d}=\left\{(f, a) \mid a \in \mathcal{I}_{d}, f: \operatorname{dom}(a) \rightarrow \mathcal{P}_{n-1}\right\}, n \geq 2,
$$

with composition

$$
(f, a) \cdot(g, b)=\left(f g^{a}, a b\right),
$$

and $\mathcal{P}_{1}=\mathcal{I}_{d}$.
To a randomly chosen element $x \in \mathcal{P}_{n}$, we assign the matrix

$$
A_{x}=\left(1_{\left\{x\left(v_{i}^{n}\right)=v_{j}^{n}\right\}}\right)_{i, j=1}^{d^{n}} .
$$

In other words, (i, j)-th entry of A_{x} is equal to 1 if transformation x maps i to j, and 0 otherwise.

Let $\chi_{x}(\lambda)$ be the characteristic polynomial of A_{x} and $\lambda_{1}, \ldots, \lambda_{d^{n}}$ be its roots respecting multiplicity.

Denote by

$$
\Xi_{n}=\frac{1}{d^{n}} \sum_{k=1}^{d^{n}} \delta_{\lambda_{k}}
$$

a uniform distribution on eigenvalues of A_{x}.
Let $x \in \mathcal{P}_{n}$ let $\eta_{n}(x)=\Xi_{n}(0)$ be a fraction of zero eigenvalues A_{x} and $\xi_{n}(x)=1-\eta_{n}(x)$ be a fraction of nonzero eigenvalues. Then we have

$$
\eta_{n}(x) \xrightarrow{\mathbb{P}} 1, n \rightarrow \infty,
$$

or, equivalently,

$$
\xi_{n}(x) \xrightarrow{\mathbb{P}} 0, n \rightarrow \infty
$$

Contact information

Eugenia Kochubinska

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Email address: eugenia@unv.kiev.ua

Olena Krytska

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
Email address: lenuly95@gmail.com
Key words and phrases. Partial automorhism, wreath product, spectral measure

Classification of quasigroup functional equations and identities of minimal length

Halyna Krainichuk

A groupoid $(Q ; \cdot)$ is called a quasigroup, if for all $a, b \in Q$ every of the equations $x \cdot a=b$ and $a \cdot y=b$ has a unique solution. A σ-parastrophe $\left(Q ; \cdot{ }^{\sigma}\right)$ of $(Q ; \cdot)$ is defined by

$$
x_{1 \sigma}{ }^{\sigma} \cdot x_{2 \sigma}=x_{3 \sigma} \Longleftrightarrow x_{1} \cdot x_{2}=x_{3}, \quad \sigma \in S_{3} .
$$

A σ-parastrophe of a class of quasigroups \mathfrak{A} is called a class ${ }^{\sigma} \mathfrak{A}$, which consists of all σ-parastrophes of quasigroups from $\mathfrak{A}[4]$.

Two identities are called:

- equivalent, if they determine the same variety;
- parastrophically equivalent, if they determine parastrophic varieties.

Evidently that every equinelent identity are parastrophically equivalent, but the inverse is not valid.

A parastrophic symmetry group of a variety \mathfrak{A} is $\operatorname{Ps}(\mathfrak{A}):=\left\{\left.\sigma\right|^{\sigma} \mathfrak{A}=\mathfrak{A}\right\}$ and it is subgroup of the group S_{3}. A variety is called:

- totally-symmetric, if $\operatorname{Ps}(\mathfrak{A})=S_{3}$;
- semisymmetric, if $\operatorname{Ps}(\mathfrak{A})=A_{3}$;
- one-sided-symmetric, if $|\operatorname{Ps}(\mathfrak{A})|=2$;
- asymmetric, if $|\operatorname{Ps}(\mathfrak{A})|=1$.

A truss of varieties is called the set of all pairwise parastrophic varieties. A truss of varieties is uniquely defined by an identity which describes one of varieties from the given truss. A truss will be called: totally-symmetric, if it has 1 variety; semisymmetric, if it has two varieties; one-sided-symmetric, if it has three varieties; asymmetric, if it has six varieties.

A length of an identity is defined as the number of all functional symbols (not necessary different) appearing in it. Any quasigroup identity of length 1 is equivalent to the identity of idempotency.

Theorem 1. An arbitrary quasigroup identity of length 2 is equivalent to exactly one of the following 14 identities and is parastrophically-equivalent to exactly one of the 6 identities having different numbers:

1) $x=x$,
2) $x y \cdot x=y$,
3) $x y=y x$,
4) $x^{2}=y^{2}$,
5) $x^{2} \cdot y=y$,
6) $x^{2} \cdot x=x$,
$\left.{ }^{\ell} 3\right) x \cdot x y=y$,
${ }^{\ell}$ 4) $\quad\left(x^{\ell} \cdot x\right) y=y$,
$\left.{ }^{\text {s }} 5\right) ~ x \cdot y^{2}=x$,
$\left.{ }^{\text {s }} 6\right) ~ x \cdot x^{2}=x$,
$\left.{ }^{r} 3\right) \quad x y \cdot y=x$,
r4) $x\left(y^{r} \cdot y\right)=x$,
${ }^{\ell}$ 5) $\quad x\left(y \cdot{ }^{\ell} \cdot y\right)=x$,
$\left.{ }^{\ell} 6\right) \quad x\left(x^{\ell} \cdot x\right)=x$.

Corollary 1. All quasigroup identities of length 2 determine 14 different varieties distributing in 6 trusses according to the law of parastrophic symmetry. The trusses 1), 2) are totally-symmetric and the trusses 3), 4), 5), 6) are one-sided-symmetric.

