Anatoliy Petravchuk

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Email address: apetrav@gmail.com

Key words and phrases. Lie algebra, polynomial ring, derivation, rank of algebra, general affine Lie algebra

On eigenvalues of random partial wreath product

Eugenia Kochubinska, Olena Krytska

Partial wreath *n*-th power of symmetric inverse semigroup \mathcal{I}_d is a semigroup defined recursively by

$$\mathcal{P}_n = (\mathcal{P}_{n-1}) \wr_p \mathcal{I}_d = \{(f, a) | a \in \mathcal{I}_d, f : \operatorname{dom}(a) \to \mathcal{P}_{n-1}\}, n \ge 2,$$

with composition

$$(f,a) \cdot (g,b) = (fg^a,ab),$$

and $\mathcal{P}_1 = \mathcal{I}_d$.

To a randomly chosen element $x \in \mathcal{P}_n$, we assign the matrix

$$A_x = \left(\mathbb{1}_{\{x(v_i^n) = v_j^n\}} \right)_{i,j=1}^{d^n}.$$

In other words, (i, j)-th entry of A_x is equal to 1 if transformation x maps i to j, and 0 otherwise.

Let $\chi_x(\lambda)$ be the characteristic polynomial of A_x and $\lambda_1, \ldots, \lambda_{d^n}$ be its roots respecting multiplicity.

Denote by

$$\Xi_n = \frac{1}{d^n} \sum_{k=1}^{d^n} \delta_{\lambda_k}$$

a uniform distribution on eigenvalues of A_x .

Let $x \in \mathcal{P}_n$ let $\eta_n(x) = \Xi_n(0)$ be a fraction of zero eigenvalues A_x and $\xi_n(x) = 1 - \eta_n(x)$ be a fraction of nonzero eigenvalues. Then we have

$$\eta_n(x) \xrightarrow{\mathbb{P}} 1, n \to \infty,$$

or, equivalently,

$$\xi_n(x) \xrightarrow{\mathbb{P}} 0, n \to \infty.$$

CONTACT INFORMATION

Eugenia Kochubinska

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Email address: eugenia@unv.kiev.ua

Olena Krytska

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Email address: lenuly95@gmail.com

Key words and phrases. Partial automorhism, wreath product, spectral measure

Classification of quasigroup functional equations and identities of minimal length

HALYNA KRAINICHUK

A groupoid $(Q; \cdot)$ is called a *quasigroup*, if for all $a, b \in Q$ every of the equations $x \cdot a = b$ and $a \cdot y = b$ has a unique solution. A σ -parastrophe $(Q; \stackrel{\sigma}{\cdot})$ of $(Q; \cdot)$ is defined by

 $x_{1\sigma} \stackrel{\sigma}{\cdot} x_{2\sigma} = x_{3\sigma} \iff x_1 \cdot x_2 = x_3, \quad \sigma \in S_3.$

A σ -parastrophe of a class of quasigroups \mathfrak{A} is called a class ${}^{\sigma}\mathfrak{A}$, which consists of all σ -parastrophes of quasigroups from \mathfrak{A} [4].

Two identities are called:

- equivalent, if they determine the same variety;

- parastrophically equivalent, if they determine parastrophic varieties.

Evidently that every equinelent identity are parastrophically equivalent, but the inverse is not valid.

A parastrophic symmetry group of a variety \mathfrak{A} is $Ps(\mathfrak{A}) := \{\sigma \mid {}^{\sigma}\mathfrak{A} = \mathfrak{A}\}$ and it is subgroup of the group S_3 . A variety is called:

- totally-symmetric, if $Ps(\mathfrak{A}) = S_3$;
- semisymmetric, if $Ps(\mathfrak{A}) = A_3$;
- one-sided-symmetric, if $|Ps(\mathfrak{A})| = 2;$
- asymmetric, if $|Ps(\mathfrak{A})| = 1$.

A truss of varieties is called the set of all pairwise parastrophic varieties. A truss of varieties is uniquely defined by an identity which describes one of varieties from the given truss. A truss will be called: *totally-symmetric*, if it has 1 variety; *semisymmetric*, if it has two varieties; *one-sided-symmetric*, if it has three varieties; *asymmetric*, if it has six varieties.

A *length* of an identity is defined as the number of all functional symbols (not necessary different) appearing in it. Any quasigroup identity of length 1 is equivalent to the identity of idempotency.

THEOREM 1. An arbitrary quasigroup identity of length 2 is equivalent to exactly one of the following 14 identities and is parastrophically-equivalent to exactly one of the 6 identities having different numbers:

COROLLARY 1. All quasigroup identities of length 2 determine 14 different varieties distributing in 6 trusses according to the law of parastrophic symmetry. The trusses 1), 2) are totally-symmetric and the trusses 3), 4), 5), 6) are one-sided-symmetric.