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Classification of quasigroup functional equations and

identities of minimal length

Halyna Krainichuk

A groupoid (𝑄; ·) is called a quasigroup, if for all 𝑎, 𝑏 ∈ 𝑄 every of the equations 𝑥 · 𝑎 = 𝑏

and 𝑎 · 𝑦 = 𝑏 has a unique solution. A 𝜎-parastrophe (𝑄;
𝜎·) of (𝑄; ·) is defined by

𝑥1𝜎
𝜎· 𝑥2𝜎 = 𝑥3𝜎 ⇐⇒ 𝑥1 · 𝑥2 = 𝑥3, 𝜎 ∈ 𝑆3.

A 𝜎-parastrophe of a class of quasigroups A is called a class 𝜎A, which consists of all
𝜎-parastrophes of quasigroups from A [4].

Two identities are called:
— equivalent, if they determine the same variety;
— parastrophically equivalent, if they determine parastrophic varieties.

Evidently that every equinelent identity are parastrophically equivalent, but the inverse is not
valid.

A parastrophic symmetry group of a variety A is Ps(A) := {𝜎 | 𝜎A = A} and it is subgroup
of the group 𝑆3. A variety is called:

— totally-symmetric, if Ps(A) = 𝑆3;
— semisymmetric, if Ps(A) = 𝐴3;
— one-sided-symmetric, if |Ps(A)| = 2;
— asymmetric, if |Ps(A)| = 1.

A truss of varieties is called the set of all pairwise parastrophic varieties. A truss of varieties
is uniquely defined by an identity which describes one of varieties from the given truss. A
truss will be called: totally-symmetric, if it has 1 variety; semisymmetric, if it has two varieties;
one-sided-symmetric, if it has three varieties; asymmetric, if it has six varieties.

A length of an identity is defined as the number of all functional symbols (not necessary
different) appearing in it. Any quasigroup identity of length 1 is equivalent to the identity of
idempotency.

Theorem 1. An arbitrary quasigroup identity of length 2 is equivalent to exactly one of the
following 14 identities and is parastrophically-equivalent to exactly one of the 6 identities having
different numbers:

1) 𝑥 = 𝑥, 2) 𝑥𝑦 · 𝑥 = 𝑦,
3) 𝑥𝑦 = 𝑦𝑥, 4) 𝑥2 = 𝑦2, 5) 𝑥2 · 𝑦 = 𝑦, 6) 𝑥2 · 𝑥 = 𝑥,
ℓ3) 𝑥 · 𝑥𝑦 = 𝑦, ℓ4) (𝑥

ℓ· 𝑥)𝑦 = 𝑦, 𝑠5) 𝑥 · 𝑦2 = 𝑥, 𝑠6) 𝑥 · 𝑥2 = 𝑥,
𝑟3) 𝑥𝑦 · 𝑦 = 𝑥, 𝑟4) 𝑥(𝑦

𝑟· 𝑦) = 𝑥, ℓ5) 𝑥(𝑦
ℓ· 𝑦) = 𝑥, ℓ6) 𝑥(𝑥

ℓ· 𝑥) = 𝑥.

Corollary 1. All quasigroup identities of length 2 determine 14 different varieties dis-
tributing in 6 trusses according to the law of parastrophic symmetry. The trusses 1), 2) are
totally-symmetric and the trusses 3), 4), 5), 6) are one-sided-symmetric.
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Remark that in Theorem 1, the identity 1) determines truss of all quasigroups; 2) determines
truss of all semisymmetric quasigroups; 3) is the truss of all commutative quasigroups; 4) is the
truss of one-sided loops; 5) is a truss of two-sided loops; 6) is a truss of quasigroups defined by
the identity 𝑥2 · 𝑥 = 𝑥.

Theorem 2. Any quasigroup identity of length 3 is equivalent to exactly one of the following
74 identities and is parastrophically-equivalent to exactly one of the 20 identities having different
numbers:

1) 𝑥 = 𝑦 2) 𝑥2 = 𝑥 3) 𝑥2 = 𝑥 ∧ 𝑦𝑥 · 𝑦 = 𝑥
4) 𝑥2 = 𝑥 ∧ 𝑥𝑦 = 𝑦𝑥, ℓ4) 𝑥2 = 𝑥 ∧ 𝑥 · 𝑥𝑦 = 𝑦, 𝑟4) 𝑥2 = 𝑥 ∧ 𝑥𝑦 · 𝑦 = 𝑥,
5) 𝑥 · 𝑥𝑦 = 𝑦𝑥, 𝑠5) 𝑦𝑥 · 𝑥 = 𝑥𝑦, ℓ5) 𝑥(𝑦 · 𝑦𝑥) = 𝑦𝑥,

𝑟5) (𝑥 · 𝑥𝑦)𝑦 = 𝑥, 𝑠ℓ5) 𝑦(𝑦𝑥 · 𝑥) = 𝑥, 𝑠𝑟5) (𝑥𝑦 · 𝑦)𝑥 = 𝑥𝑦,
6) 𝑥𝑦 · 𝑥 = 𝑦 · 𝑥𝑦, ℓ6) 𝑦(𝑥 · 𝑦𝑥) = 𝑥, 𝑟6) (𝑥𝑦 · 𝑥)𝑦 = 𝑥,
7) 𝑦𝑥 · 𝑥𝑦 = 𝑥, ℓ7) 𝑦(𝑥𝑦 · 𝑥) = 𝑥, 𝑟7) (𝑥 · 𝑦𝑥)𝑦 = 𝑥,

8) 𝑥(𝑥 · 𝑥𝑦) = 𝑦, 𝑠8) (𝑦𝑥 · 𝑥)𝑥 = 𝑦, ℓ8) 𝑥(𝑦𝑥
ℓ· 𝑦) = 𝑦𝑥,

9) 𝑦(𝑥 · 𝑥𝑦) = 𝑥, 𝑠9) (𝑦𝑥 · 𝑥)𝑦 = 𝑥, ℓ9) 𝑥(𝑦𝑥 · 𝑦) = 𝑦𝑥,
𝑟9) (𝑥 · 𝑥𝑦)𝑥 = 𝑦, 𝑠ℓ9) (𝑥𝑦 · 𝑥)𝑥 = 𝑦, 𝑠𝑟9) (𝑥 · 𝑦𝑥)𝑦 = 𝑦𝑥,
10) 𝑥2 · 𝑥𝑦 = 𝑦, 𝑠10) 𝑦𝑥 · 𝑥2 = 𝑦, ℓ10) 𝑥𝑦 · 𝑦𝑥 = 𝑦𝑥,

𝑟10) 𝑥 · (𝑥 𝑟· 𝑥)𝑦 = 𝑦, 𝑠ℓ10) 𝑥𝑦 · 𝑦𝑥 = 𝑥𝑦, 𝑠𝑟10) 𝑦(𝑥
ℓ· 𝑥) · 𝑥 = 𝑦,

11) 𝑥𝑦 · 𝑥2 = 𝑦, ℓ11) 𝑥(𝑦𝑥 · 𝑦) = 𝑦𝑥 · 𝑦, 𝑟11) 𝑥(𝑦 · 𝑥𝑦) = 𝑥,

12) 𝑦𝑥2 · 𝑦 = 𝑥, 𝑠12) 𝑦 · 𝑥2𝑦 = 𝑥, ℓ12) 𝑥𝑦 · (𝑥 ℓ· 𝑥) = 𝑦,
𝑟12) 𝑥(𝑦𝑥 · 𝑦) = 𝑥, 𝑠ℓ12) (𝑥

𝑟· 𝑥) · 𝑦𝑥 = 𝑦, 𝑠𝑟12) (𝑦 · 𝑥𝑦)𝑥 = 𝑥,

13) 𝑥𝑦2 · 𝑥 = 𝑥, 𝑠13) 𝑥 · 𝑦2𝑥 = 𝑥, ℓ13) 𝑥2(𝑦
ℓ· 𝑦) = 𝑥,

𝑟13) 𝑦 · 𝑥(𝑥 ℓ· 𝑥) = 𝑦, 𝑠ℓ13) (𝑦
𝑟· 𝑦)𝑥2 = 𝑥, 𝑠𝑟13) (𝑥

𝑟· 𝑥)𝑥 · 𝑦 = 𝑦,
14) 𝑥2𝑥 · 𝑦 = 𝑦, 𝑠14) 𝑦 · 𝑥𝑥2 = 𝑦, ℓ14) 𝑦2𝑥 · 𝑥 = 𝑥,

𝑟14) (𝑥
𝑟· 𝑥)(𝑦 ℓ· 𝑦) = 𝑥, 𝑠ℓ14) 𝑥 · 𝑥𝑦2 = 𝑥, 𝑠𝑟14) (𝑦

𝑟· 𝑦)(𝑥 ℓ· 𝑥) = 𝑥,

15) 𝑥𝑥2 · 𝑦 = 𝑦, 𝑠15) 𝑦 · 𝑥2𝑥 = 𝑦, ℓ15) 𝑦2(𝑥
ℓ· 𝑥) = 𝑥,

𝑟15) 𝑥 · 𝑥(𝑦 ℓ· 𝑦) = 𝑥, 𝑠ℓ15) (𝑥
𝑟· 𝑥)𝑦2 = 𝑥, 𝑠𝑟15) (𝑦

𝑟· 𝑦)𝑥 · 𝑥 = 𝑥,

16) 𝑥2 · 𝑥2 = 𝑥, ℓ16) 𝑥 · (𝑥 𝑟· 𝑥)𝑥 = 𝑥, 𝑟16) 𝑥(𝑥
ℓ· 𝑥) · 𝑥 = 𝑥,

17) 𝑥2𝑥 · 𝑥 = 𝑥, 𝑠17) 𝑥 · 𝑥𝑥2 = 𝑥, 𝑟17) (𝑥
𝑟· 𝑥)(𝑥 ℓ· 𝑥) = 𝑥,

18) 𝑥𝑥2 · 𝑥 = 𝑥, 𝑠18) 𝑥 · 𝑥2𝑥 = 𝑥, ℓ18) 𝑥2(𝑥
ℓ· 𝑥) = 𝑥,

𝑟18) 𝑥 · 𝑥(𝑥 ℓ· 𝑥) = 𝑥, 𝑠ℓ18) (𝑥
𝑟· 𝑥)𝑥2 = 𝑥, 𝑠𝑟18) (𝑥

𝑟· 𝑥)𝑥 · 𝑥 = 𝑥,
19) 𝑥𝑦 · 𝑦 = 𝑥 · 𝑥𝑦, 20) 𝑥𝑦 · 𝑦𝑥 = 𝑥.

Corollary 2. All quasigroup identities of length 3 determine 74 different varieties dis-
tributing in 20 trusses according to the law of parastrophic symmetry. Five trusses 1), 2), 3),
19), 20) are totally-symmetric; eight trusses 5), 9), 10), 12), 13), 14), 15), 18) are asymmetric;
seven trusses 4), 6), 7), 8), 11), 16), 17) are one-sided-symmetric; therefore, semisymmetric
trusses does not exist.

Remark that in Theorem 2, the identity 1) determines the truss of all trivial quasigroups;
2) determines the truss of all idempotent quasigroups; 3) is the truss of all idempotently
semisymmetric quasigroups; 4) is the truss of all idempotently commutative quasigroups; 10) is
truss of IP-quasigroups with invertible element 𝑥2; 11) is the truss of all CIP-quasigroups with
invertible element 𝑥2; 13) is the truss of left loops with identity 𝑥2𝑒 = 𝑥; 14) is the truss of all
left loops with identity 𝑥2 · 𝑥 = 𝑒; 15) is the truss of all left loops with identity 𝑥 · 𝑥2 = 𝑒, where
𝑒 is neutral element of the loops.

The identities 5), 𝑟5), 𝑠𝑟5), 6), 𝑟6), 7), 𝑟7), 𝑠8), 𝑠9), 𝑟9), 𝑠ℓ9), 19), 20) are found by T. Evans [1],
studying parastrophic orthogonality. Description of minimal non-trivial identities 5), 6), 7), 8),
9), 19), 20) are received by V. D. Belousov [2]. Regardless of him, the identities 5), 6), 𝑟6), 7),
𝑠8), 𝑟9), 19), 20) are highlighted by F. Bennett [3]. The parastrophic identities 5), 𝑠5), ℓ5), 𝑟5),
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𝑠ℓ5), 𝑠𝑟5) are described by Sh. Stein [5]. The identity 5) is known as I Stein’s law, 6) is II Stein’s
law, 7) is III Stein’s law, 19) is I Shröder’s law, 20) is II Shröder’s law. The identity 8) we call I
Belousov’s law and identity 9) we call II Belousov’s law.
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On reducibility of uncancellable generalized functional

equations

Halyna Krainichuk, Yuliia Andreieva, Arsen Akopyan

An algebra (𝑄; 𝑓, ℓ𝑓, 𝑟𝑓) is called a binary quasigroup [2] if it satisfies the following identities:

𝑓(ℓ𝑓(𝑥; 𝑦); 𝑦) = 𝑥, ℓ𝑓(𝑓(𝑥; 𝑦); 𝑦) = 𝑥, 𝑓(𝑥; 𝑟𝑓(𝑥; 𝑦)) = 𝑦, 𝑟𝑓(𝑥; 𝑓(𝑥; 𝑦)) = 𝑦. (1)
We consider a generalized quadratic binary quasigroup functional equations. Under the functional
equation [1] we mean the universally quantified equality of the two terms 𝜐 = 𝜔, which consists
of functional and individual variables, and has no individual or functional constants (for general
definition see [7]), while the carrier is considered to be an arbitrary set.

Two functional equations are said to be parastrophically primarily equivalent [5]–[7], if one
can obtain from the other for a finite number of following steps: 1) using quasigroup identities (1);
2) rearranging parts of the equation; 3) renaming the individual variables; 4) renaming the
functional variables.

Functional equation is called:
- generalized, if all the functional variables are pairwise different [4];
- quadratic, if every individual variable has exactly two appearance [3];
- balanced, if every individual variable has an appearance exactly once in the left and right

sides of the equation [3];
- binary, if all functional variables are binary operations [2];
- quasigroup, if it is assumed that each functional variable acquires the values in the set of

quasigroup operations of an arbitrary carrier [5].
A quasigroup functional equation is called reducible [7], if it is equivalent to a system of

equations, each of which has a smaller number of diferent individual variables. A quadratic
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