Olena Krytska

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Email address: lenuly95@gmail.com

Key words and phrases. Partial automorhism, wreath product, spectral measure

Classification of quasigroup functional equations and identities of minimal length

HALYNA KRAINICHUK

A groupoid $(Q; \cdot)$ is called a *quasigroup*, if for all $a, b \in Q$ every of the equations $x \cdot a = b$ and $a \cdot y = b$ has a unique solution. A σ -parastrophe $(Q; \stackrel{\sigma}{\cdot})$ of $(Q; \cdot)$ is defined by

 $x_{1\sigma} \stackrel{\sigma}{\cdot} x_{2\sigma} = x_{3\sigma} \iff x_1 \cdot x_2 = x_3, \quad \sigma \in S_3.$

A σ -parastrophe of a class of quasigroups \mathfrak{A} is called a class ${}^{\sigma}\mathfrak{A}$, which consists of all σ -parastrophes of quasigroups from \mathfrak{A} [4].

Two identities are called:

- equivalent, if they determine the same variety;

- parastrophically equivalent, if they determine parastrophic varieties.

Evidently that every equinelent identity are parastrophically equivalent, but the inverse is not valid.

A parastrophic symmetry group of a variety \mathfrak{A} is $Ps(\mathfrak{A}) := \{\sigma \mid {}^{\sigma}\mathfrak{A} = \mathfrak{A}\}$ and it is subgroup of the group S_3 . A variety is called:

- totally-symmetric, if $Ps(\mathfrak{A}) = S_3$;
- semisymmetric, if $Ps(\mathfrak{A}) = A_3$;
- one-sided-symmetric, if $|Ps(\mathfrak{A})| = 2;$
- asymmetric, if $|Ps(\mathfrak{A})| = 1$.

A truss of varieties is called the set of all pairwise parastrophic varieties. A truss of varieties is uniquely defined by an identity which describes one of varieties from the given truss. A truss will be called: *totally-symmetric*, if it has 1 variety; *semisymmetric*, if it has two varieties; *one-sided-symmetric*, if it has three varieties; *asymmetric*, if it has six varieties.

A *length* of an identity is defined as the number of all functional symbols (not necessary different) appearing in it. Any quasigroup identity of length 1 is equivalent to the identity of idempotency.

THEOREM 1. An arbitrary quasigroup identity of length 2 is equivalent to exactly one of the following 14 identities and is parastrophically-equivalent to exactly one of the 6 identities having different numbers:

COROLLARY 1. All quasigroup identities of length 2 determine 14 different varieties distributing in 6 trusses according to the law of parastrophic symmetry. The trusses 1), 2) are totally-symmetric and the trusses 3), 4), 5), 6) are one-sided-symmetric. Remark that in Theorem 1, the identity 1) determines truss of all quasigroups; 2) determines truss of all semisymmetric quasigroups; 3) is the truss of all commutative quasigroups; 4) is the truss of one-sided loops; 5) is a truss of two-sided loops; 6) is a truss of quasigroups defined by the identity $x^2 \cdot x = x$.

THEOREM 2. Any quasigroup identity of length 3 is equivalent to exactly one of the following 74 identities and is parastrophically-equivalent to exactly one of the 20 identities having different numbers:

1)	x = y	2)	$x^2 = x$	3)	$x^2 = x \ \land \ yx \cdot y = x$
4)	$x^2 = x \land xy = yx,$	$\ell 4)$	$x^2 = x \land x \cdot xy = y,$	$^{r}4)$	$x^2 = x \land xy \cdot y = x,$
5)	$x \cdot xy = yx,$	s5)	$yx \cdot x = xy,$	$^{\ell}5)$	$x(y \cdot yx) = yx,$
r5)		$s\ell 5)$	$y(yx \cdot x) = x,$	sr5)	$(xy \cdot y)x = xy,$
6)	$xy \cdot x = y \cdot xy,$	$\ell 6)$	$y(x \cdot yx) = x,$	r6)	$(xy \cdot x)y = x,$
7)	$yx \cdot xy = x,$	$^{\ell}7)$	$y(xy\cdot x) = x,$	$^{r}7)$	$(x \cdot yx)y = x,$
8)	$x(x \cdot xy) = y,$	$^{s}8)$	$(yx \cdot x)x = y,$	^ℓ 8)	$x(yx \stackrel{\ell}{\cdot} y) = yx,$
9)́	$y(x \cdot xy) = x,$	s9)	$(yx \cdot x)y = x,$	$\ell 9)$	$x(yx \cdot y) = yx,$
r9)	$(x \cdot xy)x = y,$	$s\ell 9)$	$(xy \cdot x)x = y,$	$^{sr}9)$	$(x \cdot yx)y = yx,$
10)	$x^2 \cdot xy = y,$	$^{s}10)$	$yx \cdot x^2 = y,$	$^{\ell}10)$	$xy \cdot yx = yx,$
r10)	$x \cdot (x \stackrel{r}{\cdot} x)y = y,$	$s\ell 10)$	$xy \cdot yx = xy,$	sr10)	$y(x \stackrel{\ell}{\cdot} x) \cdot x = y,$
11)	$xy \cdot x^2 = y,$	$^{\ell}11)$	$x(yx \cdot y) = yx \cdot y,$	r_{11}	$x(y \cdot xy) = x,$
12)	$yx^2 \cdot y = x,$	$^{s}12)$	$y \cdot x^2 y = x,$	$^{\ell}12)$	$xy \cdot (x \stackrel{\ell}{\cdot} x) = y,$
$r_{12})$	$x(yx \cdot y) = x,$	$^{s\ell}12)$	$(x \stackrel{r}{\cdot} x) \cdot yx = y,$	(sr12)	$(y \cdot xy)x = x,$
13)		$^{s}13)$	$x \cdot y^2 x = x,$	$^{\ell}13)$	P
r13)	$y \cdot x(x \stackrel{\ell}{\cdot} x) = y,$	$s\ell 13)$	$(y \stackrel{r}{\cdot} y)x^2 = x,$	sr13)	$(x \stackrel{r}{\cdot} x)x \cdot y = y,$
14)	$x^2x \cdot y = y,$	$^{s}14)$	$y \cdot xx^2 = y,$	$^{\ell}14)$	
$r_{14})$	$(x \stackrel{r}{\cdot} x)(y \stackrel{\ell}{\cdot} y) = x,$	$^{s\ell}14)$	$x \cdot xy^2 = x,$		$(y \stackrel{r}{\cdot} y)(x \stackrel{\ell}{\cdot} x) = x,$
15)	$xx^2 \cdot y = y,$	$^{s}15)$	$y \cdot x^2 x = y,$	$^{\ell}15)$	$y^2(x \stackrel{\ell}{\cdot} x) = x,$
$^{r}15)$	$x \cdot x(y \stackrel{\ell}{\cdot} y) = x,$	$^{s\ell}15)$	$(x \stackrel{r}{\cdot} x)y^2 = x,$	$^{sr}15)$	$(y \stackrel{r}{\cdot} y)x \cdot x = x,$
16)	$x^2 \cdot x^2 = x,$	$^{\ell}16)$	$x \cdot (x \stackrel{r}{\cdot} x)x = x,$	$^{r}16)$	
17)	$x^2x \cdot x = x,$	$^{s}17)$	$x \cdot xx^2 = x,$	r17)	$(x \stackrel{r}{\cdot} x)(x \stackrel{\ell}{\cdot} x) = x,$
18)	$xx^2 \cdot x = x,$	$^{s}18)$	$x \cdot x^2 x = x,$		$x^2(x \stackrel{\ell}{\cdot} x) = x,$
$r_{18})$	P	$^{s\ell}18)$	$(x \stackrel{r}{\cdot} x)x^2 = x,$	sr18)	<i>m</i>
10) 19)	x + x(x + x) = x, $xy \cdot y = x \cdot xy,$	20)	$\begin{array}{l} (x x)x = x, \\ xy \cdot yx = x. \end{array}$	10)	(w w)w w = w,
==)		==)			

COROLLARY 2. All quasigroup identities of length 3 determine 74 different varieties distributing in 20 trusses according to the law of parastrophic symmetry. Five trusses 1), 2), 3), 19), 20) are totally-symmetric; eight trusses 5), 9), 10), 12), 13), 14), 15), 18) are asymmetric; seven trusses 4), 6), 7), 8), 11), 16), 17) are one-sided-symmetric; therefore, semisymmetric trusses does not exist.

Remark that in Theorem 2, the identity 1) determines the truss of all trivial quasigroups; 2) determines the truss of all idempotent quasigroups; 3) is the truss of all idempotently semisymmetric quasigroups; 4) is the truss of all idempotently commutative quasigroups; 10) is truss of IP-quasigroups with invertible element x^2 ; 11) is the truss of all CIP-quasigroups with invertible element x^2 ; 13) is the truss of left loops with identity $x^2e = x$; 14) is the truss of all left loops with identity $x^2 \cdot x = e$; 15) is the truss of all left loops with identity $x \cdot x^2 = e$, where e is neutral element of the loops.

The identities 5), r5), sr5), 6), r6), 7), r7), s8), s9), r9), $s^{\ell}9$), 19), 20) are found by T. Evans [1], studying parastrophic orthogonality. Description of minimal non-trivial identities 5), 6), 7), 8), 9), 19), 20) are received by V. D. Belousov [2]. Regardless of him, the identities 5), 6), r6), 7), s8), r9), 19), 20) are highlighted by F. Bennett [3]. The parastrophic identities 5), s5), r5), r5, r5,

 $s^{\ell}5$), $s^{r}5$) are described by Sh. Stein [5]. The identity 5) is known as I Stein's law, 6) is II Stein's law, 7) is III Stein's law, 19) is I Shröder's law, 20) is II Shröder's law. The identity 8) we call I Belousov's law and identity 9) we call II Belousov's law.

References

- Evans T. Algebraic structures associated with Latin squares and orthogonal arrays, Proc. Conf. Algebraic Aspects of Combinatorics, Congressus Numerantium 13 (1975), 31–52.
- Belousov V. D. Parastrophically orthogonal quasigroups, Preprint Acad. nauk Moldova SSR, Izd. Stiintsa, Kishinev, (1983), p. 50 (in Russian).
- Bennett F. E. The spectra of a variety of quasigroups and related combinatorial designs, Discrete Mathematics 77 (1-3) (1989), 29-50.
- Sokhatsky F. M. Parastrophic symmetry in quasigroup theory, Visnyk Donetsk national university, Ser. A: natural sciences No. 1–2 (2016), 70–83.
- 5. Stein Sherman K. On the foundations of quasigroups, Trans. Amer. Math. Soc. 85 (1957), 228–256.

CONTACT INFORMATION

Halyna Krainichuk

Department of Radiophysics and Cybersecurity, Vasyl Stus Donetsk National University, Vinnytsia, Ukraine

Email address: krainichuk@ukr.net

Key words and phrases. Group, quasigroup, loop, invertible operation, parastrophe, identity, functional equation, parastrophic equivalence, parastrophically primary equivalence, parastrophic symmetry.

On reducibility of uncancellable generalized functional equations

HALYNA KRAINICHUK, YULIIA ANDREIEVA, ARSEN AKOPYAN

An algebra $(Q; f, {}^{\ell}f, {}^{r}f)$ is called a *binary quasigroup* [2] if it satisfies the following identities:

$$f({}^{\ell}f(x;y);y) = x, \quad {}^{\ell}f(f(x;y);y) = x, \quad f(x;{}^{r}f(x;y)) = y, \quad {}^{r}f(x;f(x;y)) = y.$$
(1)

We consider a generalized quadratic binary quasigroup functional equations. Under the *functional* equation [1] we mean the universally quantified equality of the two terms $v = \omega$, which consists of functional and individual variables, and has no individual or functional constants (for general definition see [7]), while the carrier is considered to be an arbitrary set.

Two functional equations are said to be *parastrophically primarily equivalent* [5]-[7], if one can obtain from the other for a finite number of following steps: 1) using quasigroup identities (1); 2) rearranging parts of the equation; 3) renaming the individual variables; 4) renaming the functional variables.

Functional equation is called:

- generalized, if all the functional variables are pairwise different [4];
- quadratic, if every individual variable has exactly two appearance [3];

- *balanced*, if every individual variable has an appearance exactly once in the left and right sides of the equation [3];

- *binary*, if all functional variables are binary operations [2];

- quasigroup, if it is assumed that each functional variable acquires the values in the set of quasigroup operations of an arbitrary carrier [5].

A quasigroup functional equation is called *reducible* [7], if it is equivalent to a system of equations, each of which has a smaller number of different individual variables. A quadratic