2. Belousov V.D. Fundamentals of the Theory of Quasigroups and Loops(In Russian). M.: Nauka, 1967. 222 p.
3. Krapez A. Stricly quadratic functional equations on quasigroups. Publ. Inst. Math. (Belgrad), 1981. tome 29 (43). pp. 125-138.
4. Krapez A., Simic S.K., Tosic D.V. Parastrophically uncancellable quasigroup equations. Aequationes Mathematicae, 2010. pp. 261-280.
5. Sokhatsky Fedir M. Classification of the functional equations on quasigroups (In Ukrainian). Ukrainian Mathematical Journal, 2004. 56, no. 9. pp. 1259-1266.
6. Sokhatsky Fedir M. Associates and decompositions of multiary operations. - Doctoral thesis (In Ukrainian), Vinnytsia-Kyiv, 2006.
7. Sokhatsky Fedir M. Parastrophic symmetry in quasigroup theory. Bulletin of Donetsk National University. Series A (Natural Sciences), 2016. no. 1-2. pp. 72-85.

Contact information

Halyna Krainichuk

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
Email address: kraynichuk@ukr.net

Yuliia Andreieva

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
Email address: jandreieva7@gmail.com

Arsen Akopyan

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine
Email address: a.akopyan@donnu.edu.ua
Key words and phrases. Quasigroup, parastrophe, identity, functional equation, parastrophically primary equivalence, reduciblity, cancellability.

A matrix representation of Fibonacci and Lucas polynomials

Mariia Kuchma

The k-Fibonacci and k-Lucas polynomials [2] are the natural extension of the k-Fibonacci and k -Lucas numbers and many of their properties admit a straightforward proof. The Fibonacci sequence and the golden ratio have appeared in many fields of science including high energy physics, cryptography and coding [1, 5].

Definition 1. The Fibonacci polynomial $F_{n}(x)$ is defined recurrently relation

$$
\begin{equation*}
F_{n+1}(x)=x F_{n}(x)+F_{n-1}(x) \tag{1}
\end{equation*}
$$

with $F_{0}(x)=0, F_{1}(x)=1$ for $n \geq 1$.
Fibonacci polynomials for negative subscripts are defined as $F_{-n}(x)=(-1)^{n+1} F_{n}(x)$ for $n \geq 1$.

Definition 2. The Lucas polynomial $L_{n}(x)$ is defined by the relation

$$
\begin{equation*}
L_{n+1}(x)=x L_{n}(x)+L_{n-1}(x) \tag{2}
\end{equation*}
$$

with $L_{0}(x)=2, L_{1}(x)=x$ for $n \geq 1$ and $L_{n}(x)=F_{n+1}(x)+F_{n-1}(x)$ for $n \in \mathbb{Z}$.
If $x=1$, the classic Fibonacci and Lucas sequences are obtained from (1), (2) [3-5].
Lemma 1. If X is a square matrix with $X^{2}=x X+I$, then $X^{n}=F_{n}(x) X+F_{n-1}(x) I$ for all $n \in \mathbb{Z}$.

Proposition 1. Let $Q(x)=\left(\begin{array}{cc}x & 1 \\ 1 & 0\end{array}\right)$. Then 1) $Q(x)^{n}=\left(\begin{array}{cc}F_{n+1}(x) & F_{n}(x) \\ F_{n}(x) & F_{n-1}(x)\end{array}\right)$ for all $n \in \mathbb{Z}$; 2) $\operatorname{det} Q(x)^{n}=(-1)^{n}$ (Cassini's identity).

Proposition 2. Let $R(x)=\left(\begin{array}{cc}x & 2 \\ 2 & -x\end{array}\right)$. Then 1) $Q(x) R(x)=R(x) Q(x)$; 2) $Q(x)^{n} R(x)=$ $\left(\begin{array}{cc}L_{n+1}(x) & L_{n}(x) \\ L_{n}(x) & L_{n-1}(x)\end{array}\right)$ for all $n \in \mathbb{Z}$; 3) $\operatorname{det}\left(Q(x)^{n} R(x)\right)=(-1)^{n+1}\left(x^{2}+4\right)$ (Cassini's identity).

Proposition 3. The n-th Fibonacci polynomial may be written as $F_{n}(x)=\frac{\sigma^{n}-(-\sigma)^{-n}}{\sigma+\sigma^{-1}}$ being $\sigma=\frac{x+\sqrt{x^{2}+4}}{2}$ (Binet's formula).

References

1. M. Esmaeili, M. Esmaeili, A Fibonacci-polynomial based coding method with error detection and correction, Computers and Mathematics with Applications. 60 (2010), 2738-2752.
2. S. Falcon, A. Plaza, On k-Fibonacci sequences and polynomials and their derivatives, Chaos, Solitons and Fractals. 39 (2009), no. 1, 1005-1019.
3. VE. Hoggat, Fibonacci and Lucas numbers, Palo Alto (CA): Houghton-Mifflin, 1969.
4. A. Stakhov, B. Rozin, Theory of Binet formulas for Fibonacci and Lucas p-numbers, Chaos, Solitons and Fractals. 27 (2005), no. 5, 1162-1177.
5. Th. Koshy, Fibonacci and Lucas Numbers with Applications, J. Wiley and Sons, New York, 2001.

Contact information

Mariia Kuchma

Lviv Polytechnic National University, Lviv, Ukraine
Email address: markuchma@ukr.net
URL: http://lp.edu.ua/
Key words and phrases. Fibonacci polynomial, Lucas polynomial, Golden mean

On the structure of finite groups whose non-normal subgroups are core-free

Leonid A. Kurdachenko, Aleksandr A. Pypka, Igor Ya. Subbotin

Let G be a group. The following two normal subgroups are associated with any subgroup H of the group G : H^{G}, the normal closure of H in a group G, the least normal subgroup of G including H, and $\operatorname{Core}_{G}(H)$, the (normal) core of H in G, the greatest normal subgroup of G which is contained in H. We have $H^{G}=\left\langle H^{x} \mid x \in G\right\rangle$ and $\operatorname{Core}_{G}(H)=\bigcap_{x \in G} H^{x}$. A subgroup H is normal if and only if $H=H^{G}=\operatorname{Core}_{G}(H)$. In this sense, the subgroups H, for which $\operatorname{Core}_{G}(H)=\langle 1\rangle$, are the complete opposite of the normal subgroups. A subgroup H of a group G is called core-free in G if $\operatorname{Core}_{G}(H)=\langle 1\rangle$.

There is a whole series of papers devoted to the study of groups with only two types of subgroups. In particular, from the results of [1] it is possible to obtain a description of groups that have only two possibilities for each subgroup $H: H^{G}=H$ or $H^{G}=G$. In this connection, a dual question naturally arises on the structure of groups in which there are only two other possibilities: $\operatorname{Core}_{G}(H)=H$ or $\operatorname{Core}_{G}(H)=\langle 1\rangle$. The finite groups having this property have been studied in [2].

