(z,k)-equivalence of matrices over Euclidean quadratic rings and solutions of matrix equation $AX+YB=C$

Natalija Ladzoryshyn, Vasyl’ Petrychkovych

Let $K = \mathbb{Z}\left[\sqrt{k}\right]$ be a Euclidean quadratic ring, $e(a)$ be the Euclidean norm $a \in K$ [1].

Definition 1. Matrices $A, B \in M(n, K)$ are called (z,k)-equivalent if there exist invertible matrices $S \in GL(n, \mathbb{Z})$ over the ring of integers \mathbb{Z} and $Q \in GL(n, K)$ over quadratic ring K such that $A = SQB$.

We established the standard form of matrices over a Euclidean quadratic ring with respect to the (z,k)-equivalence and used it to the description of the structure of solutions of the matrix equation $AX + YB = C$.

Theorem 1. Let $D^A = \text{diag} (\mu_1^A, ..., \mu_n^A)$ be the Smith normal form of a matrix A. Then the matrix A is (z,k)-equivalent to the triangular form T^A with invariant factors μ_i^A, $i = 1, ..., n$ on the main diagonal that is

$$SAQ = T^A = TDA,$$

where $T = \left\|t_{ij}\right\|_1^n$ is the lower unitriangular matrix namely $t_{ij} = 0$ if $i < j$, $t_{ij} = 1$ if $i = j$ and $t_{ij} = 0$ if $\mu_i^A = 1$; $e(t_{ij}) < e(\mu_i^A)$ for $t_{ij} \neq 0$, $i, j = 1, ..., n, i > j$.

If K is a Euclidean imaginary quadratic ring, then the matrix A has a finite number of triangular form T^A in the form (1) with respect to (z,k)-equivalence.

Consider the matrix equation

$$AX + YB = C,$$

where $A, B, C \in M(n, K)$ are given matrices and $X, Y \in M(n, K)$ are unknown matrices. Let pair of matrices (A, B) be the (z,k)-equivalent to the pair (T^A, T^B) of matrices T^A and T^B in the form (1) that is $SAQ_A = T^A$, $SBQ_B = T^B$, $S \in GL(n, Z)$, $Q_A, Q_B \in GL(n, K)$ [2]. Then from the equation (2) we get the equation

$$T^AH + WT^B = \tilde{C},$$

where $H = Q_A^{-1}XQ_B$, $W = SYS^{-1}$, $\tilde{C} = SCQ_B$. The matrix equations (2) and (3) are equivalent. Thus the description of the solutions of equation (2) are reduced to the description of the solutions of equation (3).

Theorem 2. If the equation (3) has a solution then it has such solutions $H = \left\|h_{ij}\right\|_1^n$, $W = \left\|w_{ij}\right\|_1^n$ that $h_{ij} = 0$ if $\mu_i = 1$, and $e(h_{ij}) < e(\mu_i^B)$ if $h_{ij} \neq 0$, $i, j = 1, ..., n$.

If K is a Euclidean imaginary quadratic ring, then the equation (3) has a finite number of such solutions.
Separability of the lattice of τ-closed totally ω-composition formations of finite groups

INNA P. LOS, VASYL’ G. SAFONO

All groups considered are finite. All notations and terminologies are standard [1]-[5].

Let ω be a non-empty set of primes. Every function of the form $f : \omega \cup \{\omega'\} \to \{\text{formations}\}$ is called an ω-composition satellite. For any ω-composition satellite $CF_\omega(f) = \{G| G/R_\omega(G) \in f(\omega') \text{ and } G/Cp(G) \in f(p) \text{ for all } p \in \pi(\text{Comm}(G)) \cap \omega\}$. If the formation \mathfrak{F} is such that $\mathfrak{F} = CF_\omega(f)$ for some ω-composition satellite f, then it is ω-composition formation, and f is ω-composition satellite of this formation.

Every formation of groups is called θ-multiply ω-composition. For $n \geq 1$, a formation \mathfrak{F} is called n-multiply ω-composition, if it has an ω-composition satellite f such that every value $f(p)$ of f is an $(n-1)$-multiply ω-composition formation. A formation \mathfrak{F} is called totally ω-composition if it is n-multiply ω-composition for all natural n.

Let for any group G, $\tau(G)$ be a set of subgroups of G such that $G \in \tau(G)$. Then we say following [5] that τ is a subgroup functor if for every epimorphism $\varphi : A \to B$ and any groups $H \in \tau(A)$ and $T \in \tau(B)$ we have $H^\varphi \in \tau(B)$ and $T^\varphi^{-1} \in \tau(A)$. A class \mathfrak{F} of groups is called τ-closed if $\tau(G) \subseteq \mathfrak{F}$ for all $G \in \mathfrak{F}$.

Let \mathfrak{X} be some set of groups. Then $c_{\omega\infty}^\tau$ form \mathfrak{X} denotes the totally ω-composition formation generated by \mathfrak{X}, i.e. $c_{\omega\infty}^\tau$ form \mathfrak{X} is the intersection of all τ-closed totally ω-composition formations containing \mathfrak{X}. For any two τ-closed totally ω-composition formations \mathfrak{M} and \mathfrak{F}, we write $\mathfrak{M} \lor_{\omega\infty}^\tau \mathfrak{F} = c_{\omega\infty}^\tau$ form($\mathfrak{M} \cup \mathfrak{F}$).

With respect to the operations $\lor_{\omega\infty}^\tau$ and \cap set $c_{\omega\infty}^\tau$ of all τ-closed totally ω-composition formations forms a complete lattice. Formations in $c_{\omega\infty}^\tau$ are called $c_{\omega\infty}^\tau$-formations.

Let \mathfrak{X} be a non-empty class of finite groups. A complete lattice θ of formations is called \mathfrak{X}-separable, if for every term $\nu(x_1, \ldots, x_n)$ of signature $\{\cap, \lor_\theta\}$, θ-formations $\mathfrak{F}_1, \ldots, \mathfrak{F}_n$ and every group $A \in \mathfrak{X} \cap \nu(\mathfrak{F}_1, \ldots, \mathfrak{F}_n)$ are exists \mathfrak{X}-groups $A_1 \in \mathfrak{F}_1, \ldots, A_n \in \mathfrak{F}_n$ such that $A \in \nu(\theta\text{form}A_1, \ldots, \theta\text{form}A_n)$. In particular, if $\mathfrak{X} = \mathfrak{G}$ is the class of all finite groups then the lattice θ of formations is called \mathfrak{G}-separable or separable.

Theorem 1. The lattice $c_{\omega\infty}^\tau$ all τ-closed totally ω-composition formations is \mathfrak{G}-separable.

Let τ be the trivial subgroup functor or let ω be the set of all primes. Then we obtain