CONTACT INFORMATION

Tetiana Obikhod

High energy physics Department, Institute for Nuclear Research NAS of Ukraine, Kiev, Ukraine *Email address*: obikhod@kinr.kiev.ua

Key words and phrases. Supersymmetry algebra, central charge, noncompact manifolds, orbifold points, coherent sheaves, Euler characteristic

On the lattice of quasi-filters of left congruence on simple inverse semigroups

Roman Oliynyk

Throughout this paper S is always a multiplicative semigroup with 0 and 1. The terminologies and definitions not given in this paper can be found in [1-5].

Denoted by Con(S) the set of all left congruence on S.

An inverse semigroup S is a semigroup in which every element x in S has a unique inverse y in S in the sense that x = xyx and y = yxy.

DEFINITION 1. A quasi-filter (see [5]) of S is defined to be subset \mathcal{E} of Con(S) satisfying the following conditions:

1. If $\rho \in \mathcal{E}$ and $\rho \subseteq \tau \in Con(S)$, then $\tau \in \mathcal{E}$.

2. $\rho \in \mathcal{E}$ implies $(\rho : s) \in \mathcal{E}$ for every $s \in S$.

3. If $\rho \in \mathcal{E}$ and $\tau \in Con(S)$ such that $(\tau : s), (\tau : t)$ are in \mathcal{E} for every $(s, t) \in \rho$, then $\tau \in \mathcal{E}$.

Denoted by S - q - fil the lattice of quasi-filters of left congruence on S.

The unique minimal element in S - q - fil is $\omega = S \times S$ and the unique maximal element is \mathcal{E}_{Δ_S} , which contains Δ_S , when $\Delta_S = \{(s, s) | s \in S\}$. Also we call a quasi-filter \mathcal{E} trivial if either it contains Δ_S or only contains ω .

THEOREM 1. Let S is simple inverse semigroup. Then the lattice of S - q - fil has no trivial quasi-filter if S has normal subgroups form a infinite chain under the set inclusion.

References

- 1. Kilp M., Knauer U., Mikhalev A. V. Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000. 529
- Luedeman J. K. Torsion theories and semigroup of quotients, Lecture Notes in Mathematics 998, Springer-Verlag, Berlin, New York, (1983), 350-373 pp.
- 3. Qiu D. Hereditary Torsion Theory of Pseudo-Regular-Systems, Semigroup Forum Vol. 66 (2003) 131-139 pp.
- 4. Wiegandt R. Radical and torsion theory for acts, Semigroup Forum 72 (2006), 312-328 pp.
- Zang R. Z., Gao W. M., Xu F. Y. Torsion theories and quasi-filters of right congruences, Algebra Colloq. 1(3) (1994), 273-280 pp.

CONTACT INFORMATION

Roman Oliynyk

Ivan Franko National University of Lviv, Lviv, Ukraine *Email address:* forvard-or@ukr.net

Key words and phrases. Quasi-filters, inverse semigroups