A. Nowicki, Polynomial Derivations and their Rings of Constants, Uniwersytet Mikolaja Kopernika, Torun, 1994.

CONTACT INFORMATION

Anatoliy Petravchuk

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine Email address: apetrav@gmail.com

Kateryna Sysak

Department of Information Systems and Technologies, National Transport University, Kyiv, Ukraine

Email address: sysakkya@gmail.com

Key words and phrases. Lie algebra, polynomial ring, derivation, rank of algebra, Darboux polynomial

Classification of quasigroups according to their parastrophic symmetry groups

Yevhen Pirus

Let Q be a set, a mapping $f: Q^3 \to Q$ is called an invertible ternary operation (=function), if it is invertible element in all semigroups $(\mathcal{O}_3; \bigoplus_0)$, $(\mathcal{O}_3; \bigoplus_1)$ and $(\mathcal{O}_3; \bigoplus_2)$, where \mathcal{O}_3 is the set of all ternary operations defined on Q and

$$(f \bigoplus_{1} f_{1})(x_{1}, x_{2}, x_{3}) := f(f_{1}(x_{1}, x_{2}, x_{3}), x_{2}, x_{3}), \quad (f \bigoplus_{2} f_{1})(x_{1}, x_{2}, x_{3}) := f(x_{1}, f_{1}(x_{1}, x_{2}, x_{3}), x_{3}),$$
$$(f \bigoplus_{1} f_{1})(x_{1}, x_{2}, x_{3}) := f(x_{1}, x_{2}, f_{1}(x_{1}, x_{2}, x_{3})).$$

The set of all ternary invertible functions is denoted by Δ_3 . If an operation f is invertible and ${}^{(14)}f$, ${}^{(24)}f$, ${}^{(34)}f$ are its inverses in those semigroups, then the algebra $(Q; f, {}^{(14)}f, {}^{(24)}f, {}^{(34)}f)$ (in brief, (Q; f)) is called a *ternary quasigroup* [1]. The inverses are also invertible. All inverses to inverses are called σ -parastrophes of the operation f and can be defined by

$${}^{\sigma}\!f(x_{1\sigma}, x_{2\sigma}, x_{3\sigma}) = x_{4\sigma} \quad \Leftrightarrow \quad f(x_1, x_2, x_3) = x_4, \quad \sigma \in S_4,$$

where S_4 denotes the group of all bijections of the set $\{0, 1, 2, 3\}$. Therefore in general, every invertible operation has 24 parastrophes. Since parastrophes of a quasigroup satisfy the equalities $\sigma(\tau f) = \sigma f$, then the symmetric group S_4 defines an action on the set Δ_3 . In particular, the fact implies that the number of different parastrophes of an invertible operation is a factor of 24. More precisely, it is equal to 24/|Ps(f)|, where Ps(f) denotes a stabilizer group of f under this action which is called *parastrophic symmetry group* of the operation f.

Let $\mathfrak{P}(H)$ denote the class of all quasigroups whose parastrophic symmetry group contains the group $H \in S_4$. A ternary quasigroup (Q; f) belongs to $\mathfrak{P}(H)$ if and only if ${}^{\sigma}f = f$ for all σ from a set G of generators of the group H, therefore, the class of quasigroup $\mathfrak{P}(H)$ is a variety.

For every subgroup H of the group S_4 the variety $\mathfrak{P}(H)$ are described and its subvariety of ternary group isotopes are found. For example, let

$$D_8 := \{\iota, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)\} \le S_4$$

THEOREM 1. A ternary quasigroup (Q; f) belong to the variety $\mathfrak{P}(D_8)$ if and only if

$$f(x, y, z) = f(y, x, z), \quad f(x, y, f(x, y, z)) = z, \quad f(z, f(x, y, z), x) = y.$$
(1)

(Q; f) is called a group isotope, if there is a group $(G; \cdot)$ and bijections $\alpha, \beta, \gamma, \delta$ such that

$$f(x, y, z) = \delta^{-1}(\alpha x \cdot \beta y \cdot \gamma z).$$

THEOREM 2. A ternary group isotope (Q, f) belongs to $\mathfrak{P}(D_8)$ iff there exists an abelian group (Q, +, 0), its involutive automorphism α and an element $a \in Q$ such that $\alpha a = -a$ and

 $f(x_1, x_2, x_3) = \alpha x_1 + \alpha x_2 - x_3 + a.$

References

- 1. Sokhatsky F. M. Parastrophic symmetry in quasigroup theory // Visnyk Donetsk national university, Ser. : natural sciences. 2016. No. 1-2. P. 70-83.
- Krainichuk H. Classification of group isotopes according to their symmetry groups // Folia Math. 2017. Vol. 19, no. 1. P. 84-98.

CONTACT INFORMATION

Yevhen Pirus

Donetsk Regional Center for Educational Quality Assessment, Ukraine *Email address*: pirus@ukr.net

Key words and phrases. Functional equations, quasigroups, group isotopes, mediality, invertible functions

Cohomology of lattices over finite abelian groups

Andriana Plakosh

It is a joint work with Yuriy Drozd.

Let G be a finite abelian group which is a direct product of cyclic groups $C_1 \times C_2 \times \cdots \times C_s$, where $\#(C_k) = o_k$. We propose a new resolution for the trivial G-module Z that simplifies the calculations of cohomologies. We also study the cohomology of G-lattices, i.e. G-module M such that the abelian group of M is free of finite rank. We set $M^* = \text{Hom}_{\mathbb{Z}}$ and $DM = \text{Hom}_G(M, \mathbb{T})$, where $\mathbb{T} = \mathbb{Q}/\mathbb{Z}$. We prove the following results about Tate cohomologies $\hat{H}^n(G, M)$, where M is a G-lattice. We establish a duality theorem generalizing [1, Theorem XII.6.6].

Theorem 1.

$$\hat{H}^{n-1}(G, DM) \simeq D\hat{H}^{-n}(G, M),$$
$$\hat{H}^{n}(G, DM) \simeq \hat{H}^{n+1}(G, M^{*}),$$
$$\hat{H}^{n}(G, M^{*}) \simeq D\hat{H}^{-n}(G, M).$$

As $\hat{H}^n(G, M)_p \simeq \hat{H}^n(G_p, M)$, where G_p is the *p*-part of *G*, we suppose further that *G* is a *p*-group and $o_k = p^{m_k}$, where $m_1 \ge m_2 \ge \cdots \ge m_s$. Recall that a *G*-lattice *M* is called *irreducible* if so is the $\mathbb{Q}G$ -module $\mathbb{Q} \otimes_{\mathbb{Z}} M$.

- Set $\nu(n,s) = (-1)^n \sum_{i=0}^n {\binom{-s}{i}}.$ THEOREM 2. Let M be an irreducible G-lattice (1) If $M \not\simeq \mathbb{Z}$, then $\hat{H}^n(G,M) \simeq (\mathbb{Z}/p\mathbb{Z})^{\nu(|n|-1,s)}.$
 - (2) If $n \neq 0$, then $\hat{H}^n(G, \mathbb{Z}) \simeq \bigoplus_{k=1}^s (\mathbb{Z}/p^{m_k}\mathbb{Z})^{\nu(|n|-1,k)+(-1)^n}$.

Recall that $\hat{H}^0(G,\mathbb{Z}) \simeq \mathbb{Z}/\#(G)\mathbb{Z}$.