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Classification of quasigroups according to their

parastrophic symmetry groups

Yevhen Pirus

Let 𝑄 be a set, a mapping 𝑓 : 𝑄3 → 𝑄 is called an invertible ternary operation (=function),
if it is invertible element in all semigroups (𝒪3;⊕

0
), (𝒪3;⊕

1
) and (𝒪3;⊕

2
), where 𝒪3 is the set of

all ternary operations defined on 𝑄 and
(𝑓 ⊕

1
𝑓1)(𝑥1, 𝑥2, 𝑥3) := 𝑓(𝑓1(𝑥1, 𝑥2, 𝑥3), 𝑥2, 𝑥3), (𝑓 ⊕

2
𝑓1)(𝑥1, 𝑥2, 𝑥3) := 𝑓(𝑥1, 𝑓1(𝑥1, 𝑥2, 𝑥3), 𝑥3),

(𝑓 ⊕
3
𝑓1)(𝑥1, 𝑥2, 𝑥3) := 𝑓(𝑥1, 𝑥2, 𝑓1(𝑥1, 𝑥2, 𝑥3)).

The set of all ternary invertible functions is denoted by ∆3. If an operation 𝑓 is invertible and
(14)𝑓 , (24)𝑓 , (34)𝑓 are its inverses in those semigroups, then the algebra (𝑄; 𝑓, (14)𝑓, (24)𝑓, (34)𝑓) (in
brief, (𝑄; 𝑓)) is called a ternary quasigroup [1]. The inverses are also invertible. All inverses to
inverses are called 𝜎-parastrophes of the operation 𝑓 and can be defined by

𝜎𝑓(𝑥1𝜎, 𝑥2𝜎, 𝑥3𝜎) = 𝑥4𝜎 :⇔ 𝑓(𝑥1, 𝑥2, 𝑥3) = 𝑥4, 𝜎 ∈ 𝑆4,

where 𝑆4 denotes the group of all bijections of the set {0, 1, 2, 3}. Therefore in general, every
invertible operation has 24 parastrophes. Since parastrophes of a quasigroup satisfy the equalities
𝜎(𝜏𝑓) = 𝜎𝜏𝑓 , then the symmetric group 𝑆4 defines an action on the set ∆3. In particular, the fact
implies that the number of different parastrophes of an invertible operation is a factor of 24.
More precisely, it is equal to 24/|Ps(𝑓)|, where Ps(𝑓) denotes a stabilizer group of 𝑓 under this
action which is called parastrophic symmetry group of the operation 𝑓 .

Let P(𝐻) denote the class of all quasigroups whose parastrophic symmetry group contains
the group 𝐻 ∈ 𝑆4. A ternary quasigroup (𝑄; 𝑓) belongs to P(𝐻) if and only if 𝜎𝑓 = 𝑓 for all 𝜎
from a set 𝐺 of generators of the group 𝐻, therefore, the class of quasigroup P(𝐻) is a variety.

For every subgroup 𝐻 of the group 𝑆4 the variety P(𝐻) are described and its subvariety of
ternary group isotopes are found. For example, let

𝐷8 := {𝜄, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)} ≤ 𝑆4.

Theorem 1. A ternary quasigroup (𝑄; 𝑓) belong to the variety P(𝐷8) if and only if
𝑓(𝑥, 𝑦, 𝑧) = 𝑓(𝑦, 𝑥, 𝑧), 𝑓(𝑥, 𝑦, 𝑓(𝑥, 𝑦, 𝑧)) = 𝑧, 𝑓(𝑧, 𝑓(𝑥, 𝑦, 𝑧), 𝑥) = 𝑦. (1)
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(𝑄; 𝑓) is called a group isotope, if there is a group (𝐺; ·) and bijections 𝛼, 𝛽, 𝛾, 𝛿 such that
𝑓(𝑥, 𝑦, 𝑧) = 𝛿−1(𝛼𝑥 · 𝛽𝑦 · 𝛾𝑧).

Theorem 2. A ternary group isotope (𝑄, 𝑓) belongs to P(𝐷8) iff there exists an abelian
group (𝑄,+, 0), its involutive automorphism 𝛼 and an element 𝑎 ∈ 𝑄 such that 𝛼𝑎 = −𝑎 and

𝑓(𝑥1, 𝑥2, 𝑥3) = 𝛼𝑥1 + 𝛼𝑥2 − 𝑥3 + 𝑎.
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Cohomology of lattices over finite abelian groups

Andriana Plakosh

It is a joint work with Yuriy Drozd.
Let 𝐺 be a finite abelian group which is a direct product of cyclic groups 𝐶1×𝐶2× · · · ×𝐶𝑠,

where #(𝐶𝑘) = 𝑜𝑘. We propose a new resolution for the trivial 𝐺-module Z that simplifies the
calculations of cohomologies. We also study the cohomology of 𝐺-lattices, i.e. 𝐺-module 𝑀 such
that the abelian group of 𝑀 is free of finite rank. We set 𝑀* = HomZ and 𝐷𝑀 = Hom𝐺(𝑀,T),
where T = Q/Z. We prove the following results about Tate cohomologies �̂�𝑛(𝐺,𝑀), where 𝑀
is a 𝐺-lattice. We establish a duality theorem generalizing [1, Theorem XII.6.6].

Theorem 1.
�̂�𝑛−1(𝐺,𝐷𝑀) ≃ 𝐷�̂�−𝑛(𝐺,𝑀),

�̂�𝑛(𝐺,𝐷𝑀) ≃ �̂�𝑛+1(𝐺,𝑀*),

�̂�𝑛(𝐺,𝑀*) ≃ 𝐷�̂�−𝑛(𝐺,𝑀).

As �̂�𝑛(𝐺,𝑀)𝑝 ≃ �̂�𝑛(𝐺𝑝,𝑀), where 𝐺𝑝 is the 𝑝-part of 𝐺, we suppose further that 𝐺 is
a 𝑝-group and 𝑜𝑘 = 𝑝𝑚𝑘 , where 𝑚1 ≥ 𝑚2 ≥ · · · ≥ 𝑚𝑠. Recall that a 𝐺-lattice 𝑀 is called
irreducible if so is the Q𝐺-module Q⊗Z 𝑀 .

Set 𝜈(𝑛, 𝑠) = (−1)𝑛
∑︀𝑛

𝑖=0

(︀−𝑠
𝑖

)︀
.

Theorem 2. Let 𝑀 be an irreducible 𝐺-lattice
(1) If 𝑀 ̸≃ Z, then �̂�𝑛(𝐺,𝑀) ≃ (Z/𝑝Z)𝜈(|𝑛|−1,𝑠).

(2) If 𝑛 ̸= 0, then �̂�𝑛(𝐺,Z) ≃
⨁︀𝑠

𝑘=1(Z/𝑝𝑚𝑘Z)𝜈(|𝑛|−1,𝑘)+(−1)𝑛.

Recall that �̂�0(𝐺,Z) ≃ Z/#(𝐺)Z.
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