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On similarity of tuples of matrices over a field

Volodymyr Prokip

Let F be a field. Denote by F𝑚×𝑛 the set of 𝑚× 𝑛 matrices over F and by F𝑚×𝑛[𝑥1, 𝑥2, , 𝑥𝑛]
the set of 𝑚× 𝑛 matrices over the polynomial ring F[𝑥1, 𝑥2, , 𝑥𝑛]. In what follows, we denote
by 𝐼𝑛 the 𝑛× 𝑛 identity matrix and by 0𝑛,𝑘 the zero 𝑚× 𝑛 matrix. The Kronecker product of
matrices 𝐴 =

[︀
𝑎𝑖𝑗

]︀
∈ F𝑚×𝑛 and 𝐵 is denoted by 𝐴⊗𝐵 =

[︀
𝑎𝑖𝑗𝐵

]︀
.

Two tuples of 𝑛× 𝑛 matrices A = {𝐴1, 𝐴2, . . . , 𝐴𝑘} and B = {𝐵1, 𝐵2, . . . , 𝐵𝑘} over a field F
are said to be simultaneously similar if there exists a nonsingular matrix 𝑈 ∈ F𝑛×𝑛 such that
𝐴𝑖 = 𝑈−1𝐵𝑖𝑈 for all 𝑖 = 1, 2, . . . , 𝑘. The task of classifying square matrices up to similarity is
one of the core and oldest problems in linear algebra (see [1], [2], [3] and references therein),
and it is generally acknowledged that it is also one of the most hopeless problems already for
𝑘 = 2. For given matrices 𝐴𝑖, 𝐵𝑖 ∈ F𝑛×𝑛 we define matrices

𝑀𝑖 =
[︀
𝐴𝑖 ⊗ 𝐼𝑛 − 𝐼𝑛 ⊗𝐵𝑇

𝑖

]︀
∈ F𝑛2×𝑛2 , 𝑖 = 1, 2, . . . , 𝑘; and 𝑀 =

⎡⎢⎢⎣
𝑀1

𝑀2
...
𝑀𝑘

⎤⎥⎥⎦ ∈ F𝑘𝑛2×𝑛2 .

Theorem 1. If two tuples of 𝑛×𝑛 matrices A = {𝐴1, 𝐴2, . . . , 𝐴𝑘} and B = {𝐵1, 𝐵2, . . . , 𝐵𝑘}
over a field F are simultaneously similar then rank𝑀 < 𝑛2.

Let rank𝑀 = 𝑛2 − 𝑟, where 𝑟 ∈ N. For the matrix 𝑀 there exists a nonsingular matrix
𝑈 ∈ F𝑛2×𝑛2 such that 𝑀𝑈 =

[︀
𝐻 0𝑘𝑛2,𝑟

]︀
, where 𝐻 ∈ F𝑘𝑛2×(𝑛2−𝑟). Put 𝑈 =

[︀
𝑈1 𝑈2

]︀
, where

𝑈2 ∈ F𝑛2×𝑟. For independent variables 𝑥1, 𝑥2, . . . , 𝑥𝑟 we construct the vector

𝑈2

⎡⎢⎢⎣
𝑥1
𝑥2
...
𝑥𝑟

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎣
𝑉1(𝑥)

𝑉2(𝑥)
...

𝑉𝑛(𝑥)

⎤⎥⎥⎥⎦ , where 𝑉𝑖(𝑥) = 𝑉𝑖(𝑥1, . . . , 𝑥𝑟) ∈ F𝑛,1[𝑥1, 𝑥2, . . . , 𝑥𝑟].

Theorem 2. Two tuples of 𝑛×𝑛 matrices A = {𝐴1, 𝐴2, . . . , 𝐴𝑘} and B = {𝐵1, 𝐵2, . . . , 𝐵𝑘}

over a field F of characteristic 0 are simultaneously similar if and only if the matrix

⎡⎢⎢⎢⎣
𝑉 𝑇
1 (𝑥)

𝑉 𝑇
2 (𝑥)
. . .

𝑉 𝑇
𝑛 (𝑥)

⎤⎥⎥⎥⎦
is nonsingular.
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Extensions of finite fields and some class of special

p-groups

Olga Pyliavska

A finite 𝑝-group 𝐺 is called special if the center 𝑍(𝐺), the commutator subgroup 𝐺′ and the
Frattini subgroup Φ(𝐺) coincide ([4]).

Special 𝑝-groups have nilpotency class 2. For these groups 𝑍(𝐺) and 𝐺/𝐺′ are elementary
abelian and exponent of 𝐺 is 𝑝 or 𝑝2.

The special 𝑝-groups of exponent 𝑝 admit some matrix presentation over the field 𝐹𝑝 = Z/𝑝Z
(see [1], [5], [6]), which gives possibility for their classification.

We define some class of special 𝑝-groups of exponent ≤ 𝑝2 which admit the calculation
in the extension of 𝐹𝑝𝑛 of finite field 𝐹𝑝. The groups of investigation has order 𝑝3𝑛, where
𝑛 = 𝑔𝑐𝑑(𝑛, 𝑝− 1) and |𝐺′| = 𝑝𝑛.

For small 𝑛 and arbitrary prime 𝑝 are obtained
∙ full classification of these groups up to isomorphism and their enumeration;
∙ the structure of maximal abelian normal subgroups and corresponding factor-groups;
∙ automorphism groups.
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