Contact information

Mykola Pratsiovytyi

Institute of Mathematics of NASU, National Pedagogical Dragomanov University, Kyiv, Ukraine
Email address: prats4444@gmail.com

Sofiia Ratushniak

Institute of Mathematics of NASU, Kyiv, Ukraine
Email address: ratush404@gmail.com
Key words and phrases. The space of sequences of zeros and ones, non-standard metric, fractal set, function with fractal properties, fractal dimension.

On similarity of tuples of matrices over a field

Volodymyr Prokip

Let \mathbb{F} be a field. Denote by $\mathbb{F}_{m \times n}$ the set of $m \times n$ matrices over \mathbb{F} and by $\mathbb{F}_{m \times n}\left[x_{1}, x_{2},, x_{n}\right]$ the set of $m \times n$ matrices over the polynomial ring $\mathbb{F}\left[x_{1}, x_{2}, x_{n}\right]$. In what follows, we denote by I_{n} the $n \times n$ identity matrix and by $0_{n, k}$ the zero $m \times n$ matrix. The Kronecker product of matrices $A=\left[a_{i j}\right] \in \mathbb{F}_{m \times n}$ and B is denoted by $A \otimes B=\left[a_{i j} B\right]$.

Two tuples of $n \times n$ matrices $\mathbf{A}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and $\mathbf{B}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ over a field \mathbb{F} are said to be simultaneously similar if there exists a nonsingular matrix $U \in \mathbb{F}_{n \times n}$ such that $A_{i}=U^{-1} B_{i} U$ for all $i=1,2, \ldots, k$. The task of classifying square matrices up to similarity is one of the core and oldest problems in linear algebra (see [1], [2], [3] and references therein), and it is generally acknowledged that it is also one of the most hopeless problems already for $k=2$. For given matrices $A_{i}, B_{i} \in \mathbb{F}_{n \times n}$ we define matrices

$$
M_{i}=\left[A_{i} \otimes I_{n}-I_{n} \otimes B_{i}^{T}\right] \in \mathbb{F}_{n^{2} \times n^{2}}, i=1,2, \ldots, k ; \quad \text { and } \quad M=\left[\begin{array}{c}
M_{1} \\
M_{2} \\
\vdots \\
M_{k}
\end{array}\right] \in \mathbb{F}_{k n^{2} \times n^{2}}
$$

Theorem 1. If two tuples of $n \times n$ matrices $\mathbf{A}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and $\mathbf{B}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ over a field \mathbb{F} are simultaneously similar then $\operatorname{rank} M<n^{2}$.

Let $\operatorname{rank} M=n^{2}-r$, where $r \in \mathbb{N}$. For the matrix M there exists a nonsingular matrix $U \in \mathbb{F}_{n^{2} \times n^{2}}$ such that $M U=\left[\begin{array}{cc}H & 0_{k n^{2}, r}\end{array}\right]$, where $H \in \mathbb{F}_{k n^{2} \times\left(n^{2}-r\right)}$. Put $U=\left[\begin{array}{cc}U_{1} & U_{2}\end{array}\right]$, where $U_{2} \in \mathbb{F}_{n^{2} \times r}$. For independent variables $x_{1}, x_{2}, \ldots, x_{r}$ we construct the vector

$$
U_{2}\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{r}
\end{array}\right]=\left[\begin{array}{c}
V_{1}(\bar{x}) \\
V_{2}(\bar{x}) \\
\vdots \\
V_{n}(\bar{x})
\end{array}\right], \quad \text { where } \quad V_{i}(\bar{x})=V_{i}\left(x_{1}, \ldots, x_{r}\right) \in \mathbb{F}_{n, 1}\left[x_{1}, x_{2}, \ldots, x_{r}\right]
$$

Theorem 2. Two tuples of $n \times n$ matrices $\mathbf{A}=\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ and $\mathbf{B}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$ over a field \mathbb{F} of characteristic 0 are simultaneously similar if and only if the matrix

$$
\left[\begin{array}{c}
V_{1}^{T}(\bar{x}) \\
V_{2}^{T}(\bar{x}) \\
\ldots \\
V_{n}^{T}(\bar{x})
\end{array}\right]
$$

References

1. Yu.A. Drozd. Representations of commutative algebras. Functional Analysis and Its Applications, 6(4): 286-288, 1972.
2. S. Friedland. Matrices: Algebra, Analysis and Applications. World Scientific Publishing Co., 2016.
3. V.V. Sergeichuk. Canonical matrices for linear matrix problems. Linear Algebra Appl., 317: 53-102, 2000.

Contact information

Volodymyr Prokip

Department of Algebra, IAPMM NAS of Ukraine, L'viv, Ukraine
Email address: v.prokip@gmail.com
Key words and phrases. Matrices, similarity

Extensions of finite fields and some class of special p-groups

Olga Pyliavska

A finite p-group G is called special if the center $Z(G)$, the commutator subgroup G^{\prime} and the Frattini subgroup $\Phi(G)$ coincide ([4]).

Special p-groups have nilpotency class 2. For these groups $Z(G)$ and G / G^{\prime} are elementary abelian and exponent of G is p or p^{2}.

The special p-groups of exponent p admit some matrix presentation over the field $F_{p}=\mathbb{Z} / p \mathbb{Z}$ (see [1], [5], [6]), which gives possibility for their classification.

We define some class of special p-groups of exponent $\leq p^{2}$ which admit the calculation in the extension of $F_{p^{n}}$ of finite field F_{p}. The groups of investigation has order $p^{3 n}$, where $n=\operatorname{gcd}(n, p-1)$ and $\left|G^{\prime}\right|=p^{n}$.

For small n and arbitrary prime p are obtained

- full classification of these groups up to isomorphism and their enumeration;
- the structure of maximal abelian normal subgroups and corresponding factor-groups;
- automorphism groups.

References

1. R. Cortini, On special p-groups., Bollettino dell'Unione Matematica Italiana, Serie 8 1-B (1998), no. 3, 677-689.
2. G. Higman, Enumeration p-groups, I., Proc. London Math. Soc. 3 (1960), no. 10, 24-30.
3. G. Higman, Enumeration p-groups, II., Proc. London Math. Soc. 3 (1960), no. 10, 566-582.
4. B. Huppert. Endliche Gruppen,I. Springer-Verlag, Berlin-Heidelberg-New York, 1967.
5. O.Pyliavska (О.Пилявская, O.Pilyavskaya), Классификация групn порядка ${ }^{6}$, $p \geq 3$ [Classification of groups of order $p^{6}, p \geq 3$], VINITI Deposit. No 1877-83 Деп., Kyiv, 1983. (in Russian)
6. O.Pyliavska (О.Пилявская, O.Pilyavskaya), Приложение матричніх задач к класификачии групп порядка $p^{6}, p \geq 3$ [Applications of matrix problems to the classification of groups of order $\left.p^{6}, p \geq 3\right]$, in Linear algebra and theory of representations, ed. by Yu.Mitropolskii (Inst.Mat.Akad.Nauk Ukrain.SSR, Kiev) , (1983), 86-99. (in Russian)
