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Extensions of finite fields and some class of special

p-groups

Olga Pyliavska

A finite 𝑝-group 𝐺 is called special if the center 𝑍(𝐺), the commutator subgroup 𝐺′ and the
Frattini subgroup Φ(𝐺) coincide ([4]).

Special 𝑝-groups have nilpotency class 2. For these groups 𝑍(𝐺) and 𝐺/𝐺′ are elementary
abelian and exponent of 𝐺 is 𝑝 or 𝑝2.

The special 𝑝-groups of exponent 𝑝 admit some matrix presentation over the field 𝐹𝑝 = Z/𝑝Z
(see [1], [5], [6]), which gives possibility for their classification.

We define some class of special 𝑝-groups of exponent ≤ 𝑝2 which admit the calculation
in the extension of 𝐹𝑝𝑛 of finite field 𝐹𝑝. The groups of investigation has order 𝑝3𝑛, where
𝑛 = 𝑔𝑐𝑑(𝑛, 𝑝− 1) and |𝐺′| = 𝑝𝑛.

For small 𝑛 and arbitrary prime 𝑝 are obtained
∙ full classification of these groups up to isomorphism and their enumeration;
∙ the structure of maximal abelian normal subgroups and corresponding factor-groups;
∙ automorphism groups.
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Some special 𝑝-groups and nearrings with identity

Iryna Raievska, Maryna Raievska

Clearly every associative ring is a nearring and each group is the additive group of a nearring,
but not necessarily of a nearring with identity. The question what group can be the additive
group of a nearring with identity is far from solution.

We investigate 𝑝-groups with cyclic subgroup of index 𝑝 as the additive groups of nearrings
with identity.

In [1, Theorem 12.5.1] it was proved that there exist seven types of 𝑝-groups with cyclic
subgroup of index 𝑝.

Theorem 1. Let 𝐺 be a group from [1, Theorem 12.5.1]. 𝐺 is the additive group of a
nearring with identity iff one of the following statement holds:

(1) 𝐺 = ⟨𝑎| 𝑎𝑝𝑛 = 1⟩, 𝑛 ≥ 1.
(2) 𝐺 = ⟨𝑎, 𝑏| 𝑎𝑝𝑛−1

= 1, 𝑏𝑝 = 1, 𝑏𝑎 = 𝑎𝑏⟩, 𝑛 ≥ 2.
(3) 𝐺 = ⟨𝑎, 𝑏| 𝑎𝑝𝑛−1

= 1, 𝑏𝑝 = 1, 𝑏𝑎 = 𝑎1+𝑝𝑛−2
𝑏⟩, 𝑝 is odd, 𝑛 ≥ 3.

(4) 𝐺 is a dihedral group of order 8.
(5) 𝐺 = ⟨𝑎, 𝑏| 𝑎2𝑛−1

= 1, 𝑏2 = 1, 𝑏𝑎 = 𝑎1+2𝑛−2
𝑏⟩, 𝑛 ≥ 4.

Denote by 𝑛(𝐺) the number of all non-isomorphic zero-symmetric nearrings with identity
whose additive group 𝑅+ is isomorphic to the group 𝐺.

So using [3, Theorem 7.1] and [2] we can easily conclude the following result:

Proposition 1. Let 𝐺 be a non-abelian group from Theorem 1. Then the following
statements hold:

(1) If 𝑝 = 2 and 𝑛 = 3, then 𝑛(𝐺) = 7.
(2) If 𝑝 = 2 and 𝑛 = 4, then 𝑛(𝐺) = 32.
(3) If 𝑝 = 2 and 𝑛 > 4, then 𝑛(𝐺) = 2𝑛+2.
(4) If 𝑝 = 3, then 𝑛(𝐺) = 3𝑛−2.
(5) If 𝑝 > 3, then 𝑛(𝐺) = 𝑝𝑛−3.
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