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Reduction of nonsingular matrices over rings of almost

stable range 1

Andriy Romaniv

All rings consider of will be a commutative with nonzero units. Recall that a ring 𝑅 is a
Bezout ring if it every finitely generated ideal is principal. A ring 𝑅 is called an elementary
divisor ring if for any 𝑛×𝑚 matrix 𝐴 over 𝑅 there exist invertible matrices 𝑃 ∈ 𝐺𝐿𝑛(𝑅) and
𝑄 ∈ 𝐺𝐿𝑚(𝑅) such that 𝑃𝐴𝑄 = 𝐷 is a diagonal matrix. 𝐷 = (𝑑𝑖𝑖) and 𝑑𝑖+1,𝑖+1𝑅 ⊆ 𝑑𝑖𝑖𝑅 [1].

We denote by 𝐺𝐸𝑛 the subgroup of 𝐺𝐿𝑛(𝑅) generated by the elementary matrices.
A ring 𝑅 is called a ring of stable range 1 if for any elements 𝑎, 𝑏 ∈ 𝑅 the equality 𝑎𝑅+𝑏𝑅 = 𝑅

implies that there is some 𝑥 ∈ 𝑅 such that (𝑎+ 𝑏𝑥)𝑅 = 𝑅.

Definition 1. An element 𝑎 ̸= 0 of a commutative ring 𝑅 is called an element almost stable
range 1 if the stable range of a factor-ring 𝑅/𝑎𝑅 is equal to 1. If all nonzero elements of a ring
𝑅 are elements of almost stable range 1 then we say that 𝑅 is a ring of almost stable range 1.

Theorem 1. Let 𝑅 be commutative Bezout domain of almost stable range 1, then for
any nonsingular matrix of size 𝑛 we can find such unimodular matrices 𝑃 ∈ 𝐺𝐸𝑛(𝑅) and
𝑄 ∈ 𝐺𝐿𝑛(𝑅), that

𝑃𝐴𝑄 =

⎛⎜⎜⎝
𝜀1 0 . . . 0
0 𝜀2 . . . 0
...

... . . . ...
0 0 . . . 𝜀𝑛

⎞⎟⎟⎠ ,

where 𝜀𝑖 is divisor 𝜀𝑖+1, 1 ≤ 𝑖 ≤ 𝑛− 1.
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On the conjugate sets of IP-quasigroups

Tatiana Rotari

A quasigroup (𝑄,𝐴) is called quasigroup with the property of invertibility (an 𝐼𝑃 -quasigroup)
if there exist two mappings 𝐼𝑙 an 𝐼𝑟 on the set 𝑄 into 𝑄 that 𝐴(𝐼𝑙𝑥, 𝐴(𝑥, 𝑦)) = 𝑦 and
𝐴(𝐴(𝑦, 𝑥), 𝐼𝑟𝑥) = 𝑦 for any 𝑥, 𝑦 ∈ 𝑄 [1]. The mappings 𝐼𝑙 and 𝐼𝑟 are permutations and
𝐼2𝑙 = 𝐼2𝑟 = 𝜀.

It is known that the system Σ of six (not necessarily distinct) conjugates (or parastrophes):
𝐴, 𝑟𝐴, 𝑙𝐴, 𝑟𝑙𝐴,𝑙𝑟𝐴,𝑠𝐴, where 𝑟𝐴(𝑥, 𝑦) = 𝑧 ⇔ 𝐴(𝑥, 𝑧) = 𝑦, 𝑙𝐴(𝑥, 𝑦) = 𝑧 ⇔ 𝐴(𝑧, 𝑦) = 𝑥, 𝑠𝐴(𝑥, 𝑦) =
𝐴(𝑦, 𝑥) (𝑟𝑙𝐴 =𝑟(𝑙𝐴)) corresponds to a quasigroup (𝑄,𝐴).

It is known [2] that the number of distinct conjugates in Σ can be 1, 2, 3 or 6.
Using suitable Belousov’s designation of conjugates of a quasigroup (𝑄,𝐴) from [1] we have

the following system Σ of conjugates:
Σ =

{︀
𝐴, 𝑟𝐴, 𝑙𝐴, 𝑙𝑟𝐴, 𝑟𝑙𝐴, 𝑠𝐴

}︀
,

where 1𝐴 = 𝐴, 𝑟𝐴 = 𝐴−1, 𝑙𝐴 =−1𝐴, 𝑙𝑟𝐴 =−1(𝐴−1), 𝑟𝑙𝐴 = (−1𝐴)−1,𝑠𝐴 = 𝐴*.
Note that (︀−1(𝐴−1)

)︀−1
=𝑟𝑙𝑟𝐴 =−1

(︀
(−1𝐴)−1

)︀
=𝑙𝑟𝑙𝐴 =𝑠𝐴

and 𝑟𝑟𝐴 =𝑙𝑙𝐴 = 𝐴, 𝜎𝜏𝐴 =𝜎(𝜏𝐴).
The conjugates og IP-quasigroup have the following form [1, 4]:

𝑙𝐴(𝑥, 𝑦) = 𝐴(𝑥, 𝐼𝑟𝑦), 𝑟𝐴(𝑥, 𝑦) = 𝐴(𝐼𝑙𝑥, 𝑦), 𝑙𝑟𝐴(𝑥, 𝑦) = 𝐼𝑙𝐴(𝑥, 𝐼𝑙𝑦),

𝑟𝑙𝐴(𝑥, 𝑦) = 𝐼𝑟𝐴(𝐼𝑙𝑥, 𝑦), 𝑠𝐴(𝑥, 𝑦) = 𝐼𝑙𝐴(𝐼𝑟𝑥, 𝐼𝑟𝑦).

The following Theorem 1 of [3, 4] describes all possible conjugate sets for quasigroups and
points out the only possible variants of equality of conjugates:

Theorem 1. The following conjugate sets of a quasigroups (𝑄, 𝐴) are only possible:
Σ1(𝐴) = {𝐴}, Σ2 = {𝐴, 𝑠𝐴} = {𝐴 =𝑙𝑟𝐴 =𝑟𝑙𝐴, 𝑙𝐴 =𝑟𝐴 =𝑠𝐴}, Σ6 = {𝐴, 𝑙𝐴, 𝑟𝐴, 𝑙𝑟𝐴, 𝑟𝑙𝐴, 𝑠𝐴},
Σ3 = {𝐴, 𝑙𝑟𝐴, 𝑟𝑙𝐴} and three cases are only possible: Σ

1

3 = {𝐴 =𝑟𝐴, 𝑙𝐴 =𝑙𝑟𝐴, 𝑟𝑙𝐴 =𝑠𝐴};
Σ

2

3 = {𝐴 =𝑙𝐴, 𝑟𝐴 =𝑟𝑙𝐴, 𝑙𝑟 =𝑠𝐴}; Σ
3

3 = {𝐴 =𝑠𝐴, 𝑟𝐴 =𝑙𝑟𝐴, 𝑙𝐴 =𝑟𝑙𝐴}.

We study the conjugate sets on the distict conjugates of IP-quasigroups and IP-loops.

Theorem 2. Let a quasigroup (𝑄, 𝐴) be an IP-quasigroup. Then
Σ(𝐴) = Σ1(𝐴) if and only if 𝐼𝑟 = 𝐼𝑙 = 𝐼 = 𝜀;
Σ(𝐴) = Σ2(𝐴) if and only if 𝐼𝑙 = 𝐼𝑟 = 𝐼 ̸= 𝜀, 𝐴(𝑥, 𝑦) ̸= 𝐴(𝑦, 𝑥) and 𝐼𝐴(𝑥, 𝑦) = 𝐴(𝑦, 𝑥);

Σ(𝐴) = Σ
1

3(𝐴) if and only if 𝐼𝑙 = 𝜀 ̸= 𝐼𝑟;

Σ(𝐴) = Σ
2

3(𝐴) if and only if 𝐼𝑟 = 𝜀 ̸= 𝐼𝑙;

Σ(𝐴) = Σ
3

3(𝐴) if and only if 𝐼𝑙 = 𝐼𝑟 = 𝐼 ̸= 𝜀 and 𝐴(𝑥, 𝑦) = 𝐴(𝑦, 𝑥);
Σ(𝐴) = Σ6(𝐴) if and only if 𝐼𝑙 = 𝐼𝑟 = 𝐼 ̸= 𝜀, 𝐴(𝑥, 𝑦) ̸= 𝐴(𝑦, 𝑥) and 𝐼𝐴(𝑥, 𝑦) ̸= 𝐴(𝑦, 𝑥).;
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