Contact information

Iryna Raievska

Department of Algebra and Topology, Institute of mathematics of NAS of Ukraine, Kyiv, Ukraine
Email address: raeirina@imath.kiev.ua
URL: https://www.imath.kiev.ua/~algebra/Raievska_I/

Maryna Raievska

Department of Algebra and Topology, Institute of mathematics of NAS of Ukraine, Kyiv, Ukraine
Email address: raemarina@imath.kiev.ua
URL: https://www.imath.kiev.ua/~algebra/Raievska_M/
Key words and phrases. p-Group, nearring with identity

Reduction of nonsingular matrices over rings of almost stable range 1

Andriy Romaniv

All rings consider of will be a commutative with nonzero units. Recall that a ring R is a Bezout ring if it every finitely generated ideal is principal. A ring R is called an elementary divisor ring if for any $n \times m$ matrix A over R there exist invertible matrices $P \in G L_{n}(R)$ and $Q \in G L_{m}(R)$ such that $P A Q=D$ is a diagonal matrix. $D=\left(d_{i i}\right)$ and $d_{i+1, i+1} R \subseteq d_{i i} R$ [1].

We denote by $G E_{n}$ the subgroup of $G L_{n}(R)$ generated by the elementary matrices.
A ring R is called a ring of stable range 1 if for any elements $a, b \in R$ the equality $a R+b R=R$ implies that there is some $x \in R$ such that $(a+b x) R=R$.

Definition 1. An element $a \neq 0$ of a commutative ring R is called an element almost stable range 1 if the stable range of a factor-ring $R / a R$ is equal to 1 . If all nonzero elements of a ring R are elements of almost stable range 1 then we say that R is a ring of almost stable range 1 .

Theorem 1. Let R be commutative Bezout domain of almost stable range 1, then for any nonsingular matrix of size n we can find such unimodular matrices $P \in G E_{n}(R)$ and $Q \in G L_{n}(R)$, that

$$
P A Q=\left(\begin{array}{cccc}
\varepsilon_{1} & 0 & \ldots & 0 \\
0 & \varepsilon_{2} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \varepsilon_{n}
\end{array}\right)
$$

where ε_{i} is divisor $\varepsilon_{i+1}, 1 \leq i \leq n-1$.

References

1. Kaplansky I. Elementary divisors and modules. Trans. Amer. Math. Soc. 166, 1966, 464-491.

CONTACT INFORMATION

Andriy Romaniv

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics NAS of Ukraine, Lviv, Ukraine
Email address: romaniv_a@ukr.net
Key words and phrases. Reduction of nonsingular matrices, rings almost stable range 1

On the conjugate sets of IP-quasigroups

Tatiana Rotari

A quasigroup (Q, A) is called quasigroup with the property of invertibility (an IP-quasigroup) if there exist two mappings I_{l} an I_{r} on the set Q into Q that $A\left(I_{l} x, A(x, y)\right)=y$ and $A\left(A(y, x), I_{r} x\right)=y$ for any $x, y \in Q[1]$. The mappings I_{l} and I_{r} are permutations and $I_{l}^{2}=I_{r}^{2}=\varepsilon$.

It is known that the system Σ of six (not necessarily distinct) conjugates (or parastrophes): $A,{ }^{r} A,{ }^{l} A,{ }^{r l} A,{ }^{l r} A,{ }^{s} A$, where ${ }^{r} A(x, y)=z \Leftrightarrow A(x, z)=y,{ }^{l} A(x, y)=z \Leftrightarrow A(z, y)=x,{ }^{s} A(x, y)=$ $A(y, x)\left({ }^{r} A={ }^{r}(A)\right)$ corresponds to a quasigroup (Q, A).

It is known [2] that the number of distinct conjugates in Σ can be $1,2,3$ or 6 .
Using suitable Belousov's designation of conjugates of a quasigroup (Q, A) from [1] we have the following system Σ of conjugates:

$$
\Sigma=\left\{A,{ }^{r} A,{ }^{l} A,{ }^{l r} A,{ }^{r l} A,{ }^{s} A\right\},
$$

where ${ }^{1} A=A, \quad{ }^{r} A=A^{-1}, \quad{ }^{l} A={ }^{-1} A, \quad{ }^{l r} A={ }^{-1}\left(A^{-1}\right),{ }^{r} A=\left({ }^{-1} A\right)^{-1},{ }^{s} A=A^{*}$.
Note that

$$
\left({ }^{-1}\left(A^{-1}\right)\right)^{-1}={ }^{r l r} A={ }^{-1}\left(\left({ }^{-1} A\right)^{-1}\right)={ }^{l r l} A={ }^{s} A
$$

and ${ }^{r r} A={ }^{l l} A=A,{ }^{\sigma \tau} A={ }^{\sigma}\left({ }^{\tau} A\right)$.
The conjugates og IP-quasigroup have the following form [1, 4]:

$$
\begin{gathered}
{ }^{l} A(x, y)=A\left(x, I_{r} y\right),{ }^{r} A(x, y)=A\left(I_{l} x, y\right),{ }^{l_{r}} A(x, y)=I_{l} A\left(x, I_{l} y\right), \\
{ }^{r l} A(x, y)=I_{r} A\left(I_{l} x, y\right),{ }^{s} A(x, y)=I_{l} A\left(I_{r} x, I_{r} y\right)
\end{gathered}
$$

The following Theorem 1 of $[\mathbf{3}, \mathbf{4}]$ describes all possible conjugate sets for quasigroups and points out the only possible variants of equality of conjugates:

Theorem 1. The following conjugate sets of a quasigroups (Q, A) are only possible: $\bar{\Sigma}_{1}(A)=\{A\}, \bar{\Sigma}_{2}=\left\{A,{ }^{s} A\right\}=\left\{A={ }^{l r} A={ }^{r l} A,{ }^{l} A={ }^{r} A={ }^{s} A\right\}, \bar{\Sigma}_{6}=\left\{A,{ }^{l} A,{ }^{r} A,{ }^{l r} A,{ }^{r l} A,{ }^{s} A\right\}$, $\bar{\Sigma}_{3}=\left\{A,{ }^{l r} A,{ }^{r l} A\right\}$ and three cases are only possible: $\bar{\Sigma}_{3}^{1}=\left\{A={ }^{r} A,{ }^{l} A={ }^{l r} A,{ }^{r l} A={ }^{s} A\right\}$; $\bar{\Sigma}_{3}^{2}=\left\{A={ }^{l} A,{ }^{r} A={ }^{r l} A,{ }^{l r}={ }^{s} A\right\} ; \bar{\Sigma}_{3}^{3}=\left\{A={ }^{s} A,{ }^{r} A={ }^{l r} A,{ }^{l} A={ }^{r l} A\right\}$.

We study the conjugate sets on the distict conjugates of IP-quasigroups and IP-loops.
THEOREM 2. Let a quasigroup (Q, A) be an IP-quasigroup. Then
$\Sigma(A)=\bar{\Sigma}_{1}(A)$ if and only if $I_{r}=I_{l}=I=\varepsilon ;$
$\Sigma(A)=\bar{\Sigma}_{2}(A)$ if and only if $I_{l}=I_{r}=I \neq \varepsilon, A(x, y) \neq A(y, x)$ and $I A(x, y)=A(y, x) ;$
$\Sigma(A)=\bar{\Sigma}_{3}^{1}(A)$ if and only if $I_{l}=\varepsilon \neq I_{r}$;
$\Sigma(A)=\bar{\Sigma}_{3}^{2}(A)$ if and only if $I_{r}=\varepsilon \neq I_{l}$;
$\Sigma(A)=\bar{\Sigma}_{3}^{3}(A)$ if and only if $I_{l}=I_{r}=I \neq \varepsilon$ and $A(x, y)=A(y, x)$;
$\Sigma(A)=\bar{\Sigma}_{6}(A)$ if and only if $I_{l}=I_{r}=I \neq \varepsilon, A(x, y) \neq A(y, x)$ and $I A(x, y) \neq A(y, x)$;

