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As shown in [3] the set 𝒮𝜎
𝑛 of all 𝑛-multiply 𝜎-local formations forms a complete algebraic

modullar lattice.

Theorem 1. The lattice 𝒮𝜎
𝑛 of all 𝑛-multiply 𝜎-local formations is a complete sublattice of

the lattice of all 𝑛-multiply saturated formations.

In the case when 𝑛 = 1, we get from Theorem 1 the following resalt.

Corollary 1. The lattice 𝒮𝜎 of all 𝜎-local formations is a complete sublattice of the lattice
of all saturated formations.
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Elementary reduction of idempotent matrices over

semiabelian rings

Andrii Sahan

A ring 𝑅 is a associative ring with nonzero identity. An elementary 𝑛×𝑛 matrix with entries
from 𝑅 is a square 𝑛× 𝑛 matrix of one of the types below:
1) diagonal matrix with invertible diagonal entries;
2) identity matrix with one additional non diagonal nonzero entry;
3) permutation matrix, i.e. result of switching some columns or rows in the identity matrix.

A ring 𝑅 is called a ring with elementary reduction of matrices in case of an arbitrary matrix
over 𝑅 possesses elementary reduction, i.e.for an arbitrary matrix 𝐴 over the ring 𝑅 there exist
such elementary matrices over 𝑅, 𝑃1, . . . , 𝑃𝑘, 𝑄1, . . . , 𝑄𝑠 of respectful size that

𝑃1 · · ·𝑃𝑘 · 𝐴 ·𝑄1 · · ·𝑄𝑠 = 𝑑𝑖𝑎𝑔(𝜀1, . . . , 𝜀𝑟, 0, . . . , 0),

where 𝑅𝜀𝑖+1𝑅 ⊆ 𝑅𝜀𝑖 ∩ 𝜀𝑖𝑅 for any 𝑖 = 1, . . . , 𝑟 − 1.
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A ring 𝑅 is called 𝐸𝐼𝐷-ring in case of an indempotent matrix over 𝑅 possesses elementary-
idempotent reduction, i.e.for an indempotent matrix 𝐴 over the ring 𝑅 there exist such elementary
matrices over 𝑅, 𝑈1, . . . , 𝑈𝑙 of respectful size that

𝑈1 · · ·𝑈𝑙 · 𝐴 · (𝑈1 · · ·𝑈𝑙)
−1 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, . . . , 𝑑𝑟, 0, . . . , 0),

where 𝑙, 𝑟 ∈ N.
An idempotent 𝑒 in a ring 𝑅 is called right (left) semicentral if for every 𝑥 ∈ 𝑅, 𝑒𝑥 = 𝑒𝑥𝑒

(𝑥𝑒 = 𝑒𝑥𝑒). And the set of right (left) semicentral idempotents of 𝑅 is denoted by 𝑆𝑟(𝑅) (𝑆𝑙(𝑅)).
We define a ring 𝑅 semiabelian if 𝐼𝑑(𝑅) = 𝑆𝑟(𝑅) ∪ 𝑆𝑙(𝑅).

All other necessary definitions and facts can be found in [1, 2, 3].

Theorem 1. Let 𝑅 be an semiabelian ring and 𝐴 be an 𝑛× 𝑛 idempotent matrix over 𝑅. If
there exist elementary matrices 𝑃1, . . . , 𝑃𝑘 and 𝑄1, . . . , 𝑄𝑠 such that 𝑃1 · · ·𝑃𝑘 · 𝐴 ·𝑄1 · · ·𝑄𝑠 is a
diagonal matrix, then there is elementary matrices 𝑈1, . . . , 𝑈𝑙 such that 𝑈1 · · ·𝑈𝑙 ·𝐴 · (𝑈1 · · ·𝑈𝑙)

−1

is diagonal matrix.

Theorem 2. Let 𝑅 be an semiabelian ring. Then a ring with elementary reduction of
matrices is an 𝐸𝐼𝐷-ring.

Theorem 3. The following are equivalent for a semialelian ring 𝑅:
(a) Each idempotent matrix over 𝑅 is diagonalizable under a elementary transformation.
(b) Each idempotent matrix over 𝑅 has a charateristic vector.

Theorem 4. Let 𝑅 be an semiabelian ring, 𝑁 be the set of nilpotents in 𝑅, and 𝐼 be an
ideal in 𝑅 with 𝐼 ⊆ 𝑁 . Then 𝑅/𝐼 is an 𝐸𝐼𝐷-ring, if and only if 𝑅 is an 𝐸𝐼𝐷-ring.
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Higher power moments of the Riesz mean error term of

hybrid symmetric square L-function

Olga Savastru

Let 𝑓(𝑧) =
∑︀∞

𝑛=1 𝑎𝑓 (𝑛)𝑒2𝜋𝑖𝑛𝑧 be a holomorphic cusp form of even weight 𝑘 ≥ 12 for the full
modular group 𝑆𝐿(2,Z), 𝑧 ∈ 𝐻, 𝐻 = {𝑧 ∈ C|𝐼𝑚(𝑧) > 0} is the upper half plane. We suppose
that 𝑓(𝑧) is a normalized eigenfunction for the Hecke operators 𝑇 (𝑛)(𝑛 ≥ 1) with 𝑎𝑓 (1) = 1.
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