As shown in [3] the set S_n^{σ} of all *n*-multiply σ -local formations forms a complete algebraic modullar lattice.

THEOREM 1. The lattice S_n^{σ} of all n-multiply σ -local formations is a complete sublattice of the lattice of all n-multiply saturated formations.

In the case when n = 1, we get from Theorem 1 the following resalt.

COROLLARY 1. The lattice S^{σ} of all σ -local formations is a complete sublattice of the lattice of all saturated formations.

References

- 1. A.N. Skiba, On one generalization of the local formations, Prob. Phys. Math. Tech. 34 (2018), no 1, 79-82.
- Z. Chi, V.G. Safonov, A.N. Skiba, On one application of the theory of n-multiply ?-local formations of finite groups, Prob. Phys. Math.Tech. 35 (2018), no 2, 85–88.
- Z. Chi, V.G. Safonov, A.N. Skiba, On n-multiply σ-local formations of finite groups, Comm. in Algebra. 47 (2019), no. 3, 957–968.
- 4. L. A. Shemetkov, *Formations of finite groups*, Moscow, Nauka, Main Editorial Board for Physical and Mathematical Literature, 1978.
- 5. A.N. Skiba Algebra of formations, Belarus. Navuka, Minsk, 1997.
- 6. K. Doerk, T. Hawkes, *Finite Soluble Groups*, Walter de Gruyter, Berlin, New York, 1992.

CONTACT INFORMATION

Inna N. Safonova

Department of Mathematics and Mechanics, Belarusian State University, Minsk, Belarus Email address: safonova@bsu.by

Vasily G. Safonov

Department of Mathematics and Mechanics, Belarusian State University, Minsk, Belarus Email address: vgsafonov@bsu.by

Key words and phrases. Formation of finite groups, formation σ -function, σ -local formation, *n*-multiply σ -local formations, lattice of formations

Elementary reduction of idempotent matrices over semiabelian rings

Andrii Sahan

A ring R is a associative ring with nonzero identity. An elementary $n \times n$ matrix with entries from R is a square $n \times n$ matrix of one of the types below:

1) diagonal matrix with invertible diagonal entries;

2) identity matrix with one additional non diagonal nonzero entry;

3) permutation matrix, i.e. result of switching some columns or rows in the identity matrix.

A ring R is called a ring with elementary reduction of matrices in case of an arbitrary matrix over R possesses elementary reduction, i.e.for an arbitrary matrix A over the ring R there exist such elementary matrices over $R, P_1, \ldots, P_k, Q_1, \ldots, Q_s$ of respectful size that

$$P_1 \cdots P_k \cdot A \cdot Q_1 \cdots Q_s = diag(\varepsilon_1, \dots, \varepsilon_r, 0, \dots, 0),$$

where $R\varepsilon_{i+1}R \subseteq R\varepsilon_i \cap \varepsilon_i R$ for any $i = 1, \ldots, r-1$.

A ring R is called *EID*-ring in case of an indempotent matrix over R possesses elementaryidempotent reduction, i.e.for an indempotent matrix A over the ring R there exist such elementary matrices over R, U_1, \ldots, U_l of respectful size that

$$U_1 \cdots U_l \cdot A \cdot (U_1 \cdots U_l)^{-1} = diag(d_1, d_2, \dots, d_r, 0, \dots, 0)$$

where $l, r \in \mathbb{N}$.

An idempotent e in a ring R is called right (left) semicentral if for every $x \in R$, ex = exe(xe = exe). And the set of right (left) semicentral idempotents of R is denoted by $S_r(R)$ ($S_l(R)$). We define a ring R semiabelian if $Id(R) = S_r(R) \cup S_l(R)$.

All other necessary definitions and facts can be found in [1, 2, 3].

THEOREM 1. Let R be an semiabelian ring and A be an $n \times n$ idempotent matrix over R. If there exist elementary matrices P_1, \ldots, P_k and Q_1, \ldots, Q_s such that $P_1 \cdots P_k \cdot A \cdot Q_1 \cdots Q_s$ is a diagonal matrix, then there is elementary matrices U_1, \ldots, U_l such that $U_1 \cdots U_l \cdot A \cdot (U_1 \cdots U_l)^{-1}$ is diagonal matrix.

THEOREM 2. Let R be an semiabelian ring. Then a ring with elementary reduction of matrices is an EID-ring.

THEOREM 3. The following are equivalent for a semialelian ring R:

- (a) Each idempotent matrix over R is diagonalizable under a elementary transformation.
- (b) Each idempotent matrix over R has a charateristic vector.

THEOREM 4. Let R be an semiabelian ring, N be the set of nilpotents in R, and I be an ideal in R with $I \subseteq N$. Then R/I is an EID-ring, if and only if R is an EID-ring.

References

- P. Ara, K.R. Goodearl, K.C. O'Meara, E. Pardo, *Diagonalization of matrices over regular rings*, Lin. Alg. Appl. 265 (1997), 147–163.
- 2. W. Chen, On semiabelian π -regular rings, Intern. J. Math. Sci. 23 (2007), 1–10.
- 3. A. Steger, Diagonability of idempotent matrices, Pac. J. Math. 19 (1966), no. 3, 535–541.
- O. M. Romaniv, A. V. Sagan, O. I. Firman Elementary reduction of idempotent matrices, Appl. Probl. Mech. and Math. 14 (2016), 7–11.

CONTACT INFORMATION

Andrii Sahan

Department of Mechanics and Mathematics, Ivan Franko National University of Lviv, Lviv, Ukraine

Email address: andrijsagan@gmail.com

Key words and phrases. Semiabelian ring, elementary matrices, ring with elementary reduction of matrices, *EID*-ring

Higher power moments of the Riesz mean error term of hybrid symmetric square L-function

Olga Savastru

Let $f(z) = \sum_{n=1}^{\infty} a_f(n) e^{2\pi i n z}$ be a holomorphic cusp form of even weight $k \ge 12$ for the full modular group $SL(2,\mathbb{Z}), z \in H, H = \{z \in \mathbb{C} | Im(z) > 0\}$ is the upper half plane. We suppose that f(z) is a normalized eigenfunction for the Hecke operators $T(n)(n \ge 1)$ with $a_f(1) = 1$.