Contact information

Dmytro M. Savchuk

Department of Mathematics and Statistics, University of South Florida, Tampa, FL, 33620, USA
Email address: savchuk@usf.edu
URL: http://savchuk.myweb.usf.edu/

Rostislav I. Grigorchuk

Department of Mathematics, Texas A\&M University, College Station, TX, 77843, USA
Email address: grigorch@math.tamu.edu
URL: https://www.math.tamu.edu/~grigorch/
Key words and phrases. p-adic numbers, groups generated by automata, Mealy automata, Moore Automata, automatic sequences

This research was partially supported by the Simons Foundation through Collaboration Grant \#317198.

Linear groups saturated by subgroups of finite central dimension

Mykola N. Semko, Liliia V. Skaskiv, O.A. Yarovaya

Let F be a field, A be a vector space over F and G be a subgroup of $\mathrm{GL}(F, A)$. We say that G has a dense family of subgroups, having finite central dimension, if for every pair of subgroups H, K of G such that $H \leqslant K$ and H is not maximal in K there exists a subgroup L of finite central dimension such that $H \leqslant L \leqslant K$ (we can note that L can match with one of the subgroups H or K). We study the locally soluble linear groups with a dense family of subgroups, having finite central dimension.

Theorem 1. Let F be a field, A be a vector space over F, having infinite dimension, and G be a locally soluble subgroup of $\mathrm{GL}(F, A)$. Suppose that G has infinite central dimension. If G has a dense family of subgroups, having finite central dimension, then G is a group of one of the following types:
(i) G is cyclic or quasicyclic p-group for some prime p;
(ii) $G=K \times L$ where K is cyclic or quasicyclic p-group for some prime p and L is a group of prime order;
(iii) $G=\langle a, b||a|=2^{n},|b|=2, a^{b}=a^{t}$ where $\left.t=1+2^{n-1}, n \geqslant 3\right\rangle$;
(iv) $G=\langle a, b||a|=2^{n},|b|=2, a^{b}=a^{t}$ where $\left.t=-1+2^{n-1}, n \geqslant 3\right\rangle$;
(v) $\left.G=\langle a, b||a|=2^{n},|b|=2, a^{b}=a^{-1}\right\rangle$;
(vi) $G=\langle a, b||a|=2^{n}, b^{2}=a^{t}$ where $\left.t=2^{n-1}, a^{b}=a^{-1}\right\rangle$;
(vii) $\left.G=\langle a, b||a|=p^{n},|b|=p, a^{b}=a^{t}, t=1+p^{n-1}, n \geqslant 2\right\rangle, p$ is an odd prime;
(viii) $G=\langle a\rangle \lambda\langle b\rangle,|a|=p^{n}$ where p is an odd prime, $|b|=q, q$ is a prime, $q \neq p$;
(ix) $G=B \lambda\langle a\rangle,|a|=p^{n}, B=C_{G}(B)$ is an elementary abelian q-subgroup, p and q are primes, $p \neq q, B$ is a minimal normal subgroup of G;
(x) $G=K \lambda\langle b\rangle$, where K is a quasicyclic 2-subgroup, $|b|=2$ and $x^{b}=x^{-1}$ for each element $x \in K$;
(xi) $G=K\langle b\rangle$, where $K=\left\langle a_{n} \mid a_{1}^{p}=1, a_{n+1}^{p}=a_{n}, n \in \mathbb{N}\right\rangle$ is a quasicyclic 2-subgroup, $b^{2}=a_{1}$ and $a_{n}^{b}=a_{n}^{-1}, n \geqslant 2$;
(xii) $G=K \lambda\langle b\rangle$, where K is a quasicyclic p-subgroup, p is an odd prime, $K=C_{G}(K)$, $|b|=q$ is a prime such that $p \neq q$;
(xiii) $G=Q \lambda K$, where K is a quasicyclic p-subgroup, $Q=C_{G}(Q)$ is an elementary abelian q-subgroup, p, q are primes, $p \neq q, Q$ is a minimal normal subgroup of G.

Contact information

Mykola N. Semko

Department of Mathematics, University of State Fiscal Service of Ukraine, Irpin, Ukraine Email address: dr.mykola.semko@gmail.com,

Liliia V. Skaskiv

Department of Mathematics, University of State Fiscal Service of Ukraine, Irpin, Ukraine Email address: lila_yonyk@ua.fm

O.A. Yarovaya

Department of Mathematics, University of State Fiscal Service of Ukraine, Irpin, Ukraine Email address: yarovaoa@ukr.net

Semiscalar equivalence of one class of 3 -by-3 matrices

Bohdan Shavarovskii

Let a matrix $F(x) \in M(3, \mathbb{C}[x])$ have a unit first invariant factor and only one characteristic root. We assume that this uniquely characteristic root is zero. In [1], the author proved that in the class $\{P F(x) Q(x)\}$, where $P \in G L(3, C), Q(x) \in G L(3, \mathbb{C}[x])$ there exists a matrix

$$
A(x)=\left\|\begin{array}{ccc}
1 & 0 & 0 \\
a_{1}(x) & x^{k_{1}} & 0 \\
a_{3}(x) & a_{2}(x) & x^{k_{2}}
\end{array}\right\|
$$

(notation: $A(x) \approx F(x)$), which has the following properties:
(i) $\operatorname{deg} a_{1}<k_{1}, \operatorname{deg} a_{2}, \operatorname{deg} a_{3}<k_{2}, a_{2}(x)=x^{k_{1}} a_{2}^{\prime}(x), a_{1}(0)=a_{2}^{\prime}(0)=a_{3}(0)=0 ;$
(ii) $\operatorname{codeg} a_{3} \neq \operatorname{codeg} a_{1}, \operatorname{codeg} a_{2}^{\prime}$, if $\operatorname{codeg} a_{3}<\operatorname{codeg} a_{2}$;
(iii) $\operatorname{codeg} a_{3} \neq 2 \operatorname{codeg} a_{1}+\operatorname{codeg} a_{2}^{\prime}$ and in $a_{1}(x)$ the monomial of the degree $2 \operatorname{codeg} a_{1}$ is absent, if $\operatorname{codeg} a_{3} \geq \operatorname{codeg} a_{2}$.

Here codeg denotes the junior degree of polynomial. The purpose of this report is to construct the canonical form of the matrix $F(x)$ in the class $\{P F(x) Q(x)\}$. If both elements $a_{1}(x), a_{2}(x)$ of the matrix $A(x)$ are non-zero, then we may take their junior coefficients to be identity elements. In the opposite case, we may take the junior coefficients of the non-zero subdiagonal elements of the matrix $A(x)$ to be one. Such matrix $A(x)$ in $[1]$ is called the reduced matrix. In this report we consider the case, when some of the elements $a_{1}(x), a_{2}(x), a_{3}(x)$ of the matrix $A(x)$ are equal to zero and at least one of them is different from zero.

Theorem 1. Let in the reduced matrix $A(x)$ the conditions $a_{i}(x) \neq 0$, for some index i from set $\{1,2,3\}$ and $a_{j}(x) \equiv 0$ for the rest $j \in\{1,2,3\}, j \neq i$, be fulfilled. Then $A(x) \approx B(x)$, where in the reduced matrix

$$
B(x)=\left\|\begin{array}{ccc}
1 & 0 & 0 \\
b_{1}(x) & x^{k_{1}} & 0 \\
b_{3}(x) & b_{2}(x) & x^{k_{2}}
\end{array}\right\|,
$$

