$N\left(\beta_{k}\right)$. Then

$$
\begin{equation*}
\sum_{N(\alpha) \leq x} g_{2}^{*}(\alpha) \sim e^{c_{0} \sqrt{\log x}} \sum_{(h, v)} H(h, v)(\log x)^{-\frac{2 h+v}{4}}\left(1+a_{0}(\log x)^{-\frac{1}{2}}-\frac{2 h+v}{4}(\log x)^{-1}\right) \tag{4}
\end{equation*}
$$

where c_{0}, a_{0} are positive countable constants, the sum $\sum_{(h, v)}$ means that we summarize by all the pairs (h, v) such that $1 \leq h \leq N, v=1,2, \ldots$ and $h+\frac{1}{2} v \leq N+\frac{5}{2}$.

These results are a generalization of the results of K. Broughan [1] and I. Katai - M. V. Subbarao [2].

References

1. K. Broughan, Quadrafree factorization numerorum, Rocky Mountain J. Math. (2014), no. 40(3), 791-807.
2. I. Katai and M. V. Subbarao On product partitions and asymptotic formulas, Proc. Of the Intern. Conference on analytic number theory, Bangalore, India. December 13-15, 2003. Mysore: Ramanujan Math. Soc., Ramanujan Math. Soc. Lecture Notice. (2006), no. 2, 99-114.

Contact information

Valeriia Shramko

Chair of Computational Algebra and Discrete Mathematics, Odessa I. I. Mechnikov National University, Odessa, Ukraine
Email address: maths_onu@ukr.net
Key words and phrases. Gaussian integer, power-free number, square-free number

The commutators of Sylow 2-subgroups of alternating group and wreath product. Their minimal generating sets

Ruslan SkuratovskiI

We consider the commutator of Sylow 2-subgroups of an alternating group and research its minimal generating sets. The commutator width of a group G, denoted by $c w(G)[1]$, is the maximum of commutator lengths of elements of its derived subgroup $[G, G]$. The commutator width of Sylow 2-subgroups of the alternating group $A_{2^{k}}$, symmetric group $S_{2^{k}}$ and C_{p} 乙 B are equal to 1. The paper presents a structure of a commutator subgroup of Sylow 2-subgroups of alternating groups. We prove that the commutator width [1] of an arbitrary element of a permutational wreath product of cyclic groups $C_{p_{i}}, p_{i} \in \mathbb{N}$, is 1 . As it has been proven in [2] there are subgroups G_{k} and B_{k} in the automorphisms group $A u t X^{[k]}$ of the restricted binary rooted tree such that $G_{k} \simeq S y l_{2} A_{2^{k}}$ and $B_{k} \simeq S y l_{2} S_{2^{k}}$, respectively.

Theorem 1. An element $\left(g_{1}, g_{2}\right) \sigma \in G_{k}^{\prime}$, where $\sigma \in S_{2}$ iff $g_{1}, g_{2} \in G_{k-1}$ and $g_{1} g_{2} \in B_{k-1}^{\prime}$.
Lemma 1. For any group B and integer $p \geq 2$ the following inequality is true:

$$
c w\left(B \imath C_{p}\right) \leq \max (1, c w(B)) .
$$

Corollary 1. For prime $p>2$ and $k>1$ the commutator widths of $\operatorname{Syl}_{p}\left(A_{p^{k}}\right)$ and of Syl $l_{p}\left(S_{p^{k}}\right)$ are equal to 1 .

Further, we analyze the structure of the elements of $S y l_{2} S_{2^{k}}^{\prime}$ and obtain the following result.
Theorem 2. Elements of Syl $_{2} S_{2_{k}}^{\prime}$ have the following form
$\left\{[f, l] \mid f \in B_{k}, l \in G_{k}\right\}=\left\{[l, f] \mid f \in B_{k}, l \in G_{k}\right\}$.

Moreover, we get a more general result about the commutator width for a finite wreath product of finite cyclic groups.

Corollary 2. If $W=C_{p_{k}} \prec \ldots \prec C_{p_{1}}$ then for $k \geq 2$ we have $c w(W)=1$.
THEOREM 3. The commutator width of the group $\operatorname{Syl}_{2} A_{2^{k}}$ is equal to 1 for $k \geq 2$.
Theorem 4. A commutator of G_{k} has the form $G_{k}^{\prime} \simeq G_{k-1} \star G_{k-1}$, where \star is the subdirect product. The order of $G^{\prime}{ }_{k}$ is equal to $2^{2^{k}-k-2}$. The order of $G^{\prime \prime}{ }_{k}$ is equal to $2^{2^{k}-3 k+1}$.

Proposition 1. The subgroup $\left(S y l_{2} A_{2^{k}}\right)^{\prime}$ has a minimal generating set of $2 k-3$ generators.
For instance, a minimal generating set of $S y l_{2}^{\prime}\left(A_{8}\right)$ consists of 3 generators: $(1,3)(2,4)(5,7)(6,8),(1,2)(3,4),(1,3)(2,4)(5,8)(6,7)$. In addition, $S y l_{2}^{\prime}\left(A_{8}\right) \simeq C_{2}^{3}$.

References

1. A. Muranov. Finitely generated infinite simple groups of infinite commutator width, arXiv:math/0608688v4 [math.GR] 12 Sep 2009.
2. R. V. Skuratovskii. Involutive irreducible generating sets and structure of sylow 2-subgroups of alternating groups, ROMAI J., 13, Issue 1, (2017), 117-139.
3. R. V. Skuratovskii. Твірні та співвідношення силовських р-підгруп групи $S_{n}[$ Generators and relations for Sylows p-subgroup of group S_{n}], Naukovi Visti KPI., no. 4, (2013), 94-105 (in Ukranian).

Contact information

Ruslan Skuratovskii

Department of Computer and Informational Technology, IAMP of Kiev, Ukraine
Email address: ruslcomp@mail.ru, ruslan@unicyb.kiev.ua
Key words and phrases. Commutator width, minimal generating set, commutator of Sylow 2-subgroups of alternating group, commutator width of wreath product

On general solutions of generalized ternary quadratic invertible functional equations of length three

Fedir Sokhatsky

A binary quasigroup is a pair $(Q ; \circ)$, where Q is a set called a carrier and \circ is an invertible binary operation defined on Q, i.e., there exist operations $\stackrel{\ell}{\circ}$ and $\stackrel{r}{\circ}$ such that for any $x, y \in Q$

$$
\left(x \circ{ }^{\ell} y\right) \circ y=x, \quad(x \circ y) \circ \frac{\ell}{\circ} y=x, \quad x \circ(x \circ r)=y, \quad x \circ \stackrel{r}{\circ}_{\circ}^{\circ}(x \circ y)=y
$$

are true. Similarly, a mapping $f: Q^{3} \rightarrow Q$ is a ternary invertible operation if there exist operations ${ }^{(14)} f,{ }^{(24)} f,{ }^{(34)} f$ such that for all x, y, z in Q

$$
\begin{array}{ll}
f\left({ }^{(14)} f(x, y, z), y, z\right)=x, & { }^{(14)} f(f(x, y, z), y, z)=x, \\
f\left(x,{ }^{(24)} f(x, y, z), z\right)=y, & { }^{(24)} f(x, f(x, y, z), z)=y, \\
f\left(x, y,{ }^{(34)} f(x, y, z)\right)=z, & { }^{(34)} f(x, y, f(x, y, z))=z
\end{array}
$$

hold. If an operation f is invertible, then the algebra $\left(Q ; f,{ }^{(14)} f,{ }^{(24)} f,{ }^{(34)} f\right)$ is called a ternary quasigroup.

Here, a ternary functional equation $[1,2]$ is a universally quantified equality $T_{1}=T_{2}$, where T_{1} and T_{2} are terms consisting of individual and ternary functional variables, in addition all functional variables are free. The number of the functional variables including their repetitions is called a length of the equation. An equation is called generalized if all functional variables are pairwise different.

