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Let (𝐹1, 𝐹2, 𝐹3) be the lexicographical sequence of functional variables of a ternary generalized
functional equation 𝑇1 = 𝑇2 of length three. A sequence (𝑓1, 𝑓2, 𝑓3) of invertible ternary functions
defined on a carrier is called a solution of 𝑇1 = 𝑇2 if substituting 𝑓1 for 𝐹1, 𝑓2 for 𝐹2 and 𝑓3 for
𝐹3, we obtain a true proposition 𝑡1 = 𝑡2, i.e., 𝑡1 = 𝑡2 is an identity [2].

The classification theorem of generalized ternary quadratic quasigroup functional equations
of length three is given in [3]. There are four non-equivalent functional equations. The general
solution of one of them is given in the following theorem. Solutions of the other three equations
are formulated in [4].

Theorem 1. A triplet (𝑓1, 𝑓2, 𝑓3) of ternary invertible operations defined on a set 𝑄 is a
solution of the functional equation

𝐹1(𝐹2(𝑥, 𝑦, 𝑧), 𝑥, 𝑢) = 𝐹3(𝑦, 𝑧, 𝑢)

if and only if there exist binary invertible operations ∘, *, ◇ on 𝑄 such that

𝑓1(𝑦, 𝑥, 𝑢) = (𝑥 ◇ 𝑦) * 𝑢, 𝑓2(𝑥, 𝑦, 𝑧) = 𝑥
𝑟◇ (𝑦 ∘ 𝑧), 𝑓3(𝑦, 𝑧, 𝑢) = (𝑦 ∘ 𝑧) * 𝑢.
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Some conditions for a quasigroup to be a group isotope

Fedir Sokhatsky

A binary quasigroup is a pair (𝑄; ∘), where 𝑄 is a set called a carrier and ∘ is an invertible
binary operation defined on 𝑄, i.e., there exist operations

ℓ∘ and 𝑟∘ such that for any 𝑥, 𝑦 ∈ 𝑄

(𝑥
ℓ∘ 𝑦) ∘ 𝑦 = 𝑥, (𝑥 ∘ 𝑦)

ℓ∘ 𝑦 = 𝑥, 𝑥 ∘ (𝑥
𝑟∘ 𝑦) = 𝑦, 𝑥

𝑟∘ (𝑥 ∘ 𝑦) = 𝑦.

We say that an identity has a group isotope property, if every quasigroup satisfying this
identity is isotopic to a group.

Definition 1. We say that variables 𝑥1, . . . , 𝑥𝑛 are isolated in an identity 𝜔 = 𝜐 by
sub-terms 𝑡1, . . . , 𝑡𝑘, if all appearances in the identity of the variables belong to two of these
terms and every variable has one appearance in at least one of the terms.

Let 𝑥, 𝑦, 𝑧 be arbitrary fixed variables. We will write 𝑡(𝑥, 𝑦) if the term 𝑡 contains the
variables 𝑥 and 𝑦 and does not contain 𝑧.

Theorem 1. A quasigroup identity has a group isotopic property if three of its variables 𝑥,
𝑦, 𝑧 are isolated by some sub-terms 𝑡1(𝑥, 𝑦), 𝑡2(𝑥, 𝑧), 𝑡3(𝑦, 𝑧).
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For example, each quasigroup satisfying the identity(︁
(𝑢𝑛1((𝑥 · (𝑥𝑢)𝑛2𝑦) · 𝑥𝑛3⏟  ⏞  

𝑡1(𝑥,𝑦)

) · 𝑢𝑛4) · (𝑣 · (𝑧𝑛5𝑥 · 𝑧𝑢⏟  ⏞  
𝑡3(𝑥,𝑧)

)𝑣)𝑢)
)︁
· (𝑦 · (𝑧𝑛𝑛6)𝑦𝑛)⏟  ⏞  

𝑡2(𝑦,𝑧)

) = 𝑣

is isotopic to a group. A bracketing in 𝑢𝑛1 , (𝑥𝑢)𝑛2 ,. . . does not matter.
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Canonical decompositions of solutions of functional

equation of generalized mediality

Fedir Sokhatsky, Diana Kirka

Let 𝑄 be a set, a mapping 𝑓 : 𝑄2 → 𝑄 is called an invertible binary operation (=function),
if it is invertible element in both semigroups (𝒪2;⊕

0
) and (𝒪2;⊕

1
), where 𝒪2 is the set of all

binary operations defined on 𝑄 and
(𝑓 ⊕

0
𝑔)(𝑥, 𝑦) := 𝑓(𝑔(𝑥, 𝑦), 𝑦), (𝑓 ⊕

1
𝑔)(𝑥, 𝑦) := 𝑓(𝑥, 𝑔(𝑥, 𝑦)).

The set of all binary invertible functions is denoted by ∆2. A functional equation
𝐹1(𝐹2(𝑥, 𝑦), 𝐹3(𝑢, 𝑣)) = 𝐹4(𝐹5(𝑥, 𝑢), 𝐹6(𝑦, 𝑣)), (1)

where 𝐹1, . . . , 𝐹6 are functional variables and 𝑥, 𝑦, 𝑢, 𝑣 are individual variables, is called
a functional equation of generalized mediality. The equation was solved in [1]. Namely, the
following theorem was proved

Theorem 1. A sequence (𝑓1, . . . , 𝑓6) of invertible functions defined on a set 𝑄 is a solution
of (1) if and only if there exists a comutative group (𝑄; +, 0) and bijections 𝛼1, . . . , 𝛼6 of 𝑄
such that

𝑓1(𝑥, 𝑧) = 𝛼5𝑥+ 𝛼6𝑧, 𝑓2(𝑥, 𝑦) = 𝛼5
−1(𝛼1𝑥+ 𝛼2𝑦), 𝑓3(𝑢, 𝑣) = 𝛼6

−1(𝛼3𝑢+ 𝛼4𝑣),

𝑓4(𝑧, 𝑦) = 𝛼7𝑧 + 𝛼8𝑦, 𝑓5(𝑥, 𝑢) = 𝛼7
−1(𝛼1𝑥+ 𝛼3𝑢), 𝑓6(𝑦, 𝑣) = 𝛼8

−1(𝛼2𝑦 + 𝛼4𝑣).

The sequence (+, 𝛼1, . . . , 𝛼8) will be called a decomposition of the solution (𝑓1, . . . , 𝑓6).
Theorem 1 proves that every solution has a decomposition and moreover every sequence uniquely
defines a solution of (1). But the same solution may have different decomposition. For example,
let 𝜃 be an arbitrary automorphism of the group (𝑄; +), it is easy to see that the sequence
(+, 𝜃𝛼1, . . . , 𝜃𝛼8) defines the same solution of (1).

A decomposition (+, 𝛼1, . . . , 𝛼8) of a solution of (1) will be called 0-canonical if 0 is a neutral
element of the group (𝑄; +) and 𝛼10 = 𝛼50 = 𝛼70 = 0.

Theorem 2. Every element 0 ∈ 𝑄 uniquely defines a canonical decomposition of an arbitrary
solution of the functional equation of generalized mediality.
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