Let (F_1, F_2, F_3) be the lexicographical sequence of functional variables of a ternary generalized functional equation $T_1 = T_2$ of length three. A sequence (f_1, f_2, f_3) of invertible ternary functions defined on a carrier is called a *solution* of $T_1 = T_2$ if substituting f_1 for F_1 , f_2 for F_2 and f_3 for F_3 , we obtain a true proposition $t_1 = t_2$, i.e., $t_1 = t_2$ is an identity [2].

The classification theorem of generalized ternary quadratic quasigroup functional equations of length three is given in [3]. There are four non-equivalent functional equations. The general solution of one of them is given in the following theorem. Solutions of the other three equations are formulated in [4].

THEOREM 1. A triplet (f_1, f_2, f_3) of ternary invertible operations defined on a set Q is a solution of the functional equation

$$F_1(F_2(x, y, z), x, u) = F_3(y, z, u)$$

if and only if there exist binary invertible operations \circ , *, \diamond on Q such that

 $f_1(y, x, u) = (x \diamond y) * u,$ $f_2(x, y, z) = x \overset{r}{\diamond} (y \circ z),$ $f_3(y, z, u) = (y \circ z) * u.$

References

- 1. J. Aczél, Lectures on Functional Equations and their applications, Acad. press, New York, 1966.
- F. Sokhatsky, Parastrophic symmetry in quasigroup theory, Bulletin of Donetsk National University. Series A: Natural Sciences. (2000), no. 1/2, 70–83.
- 3. F. Sokhatsky and A. Tarasevych, *Classification of generalized ternary quadratic quasigroup functional equations of length three*, (here).
- 4. A. Tarasevych, General solutions of generalized ternary quadratic invertible functional equations of length three, (here).

CONTACT INFORMATION

Fedir Sokhatsky

Department of Mathematical Analysis and Differential Equations, Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine

Email address: fmsokha@ukr.net

Key words and phrases. Ternary quasigroup, quadratic equation, length of a functional equation, parastrophically primary equivalence

Some conditions for a quasigroup to be a group isotope

FEDIR SOKHATSKY

A binary quasigroup is a pair $(Q; \circ)$, where Q is a set called a *carrier* and \circ is an invertible binary operation defined on Q, i.e., there exist operations $\stackrel{\ell}{\circ}$ and $\stackrel{r}{\circ}$ such that for any $x, y \in Q$

$$(x \circ y) \circ y = x,$$
 $(x \circ y) \circ y = x,$ $x \circ (x \circ y) = y,$ $x \circ (x \circ y) = y.$

We say that an identity has a *group isotope property*, if every quasigroup satisfying this identity is isotopic to a group.

DEFINITION 1. We say that variables x_1, \ldots, x_n are *isolated in an identity* $\omega = v$ by sub-terms t_1, \ldots, t_k , if all appearances in the identity of the variables belong to two of these terms and every variable has one appearance in at least one of the terms.

Let x, y, z be arbitrary fixed variables. We will write t(x, y) if the term t contains the variables x and y and does not contain z.

THEOREM 1. A quasigroup identity has a group isotopic property if three of its variables x, y, z are isolated by some sub-terms $t_1(x, y)$, $t_2(x, z)$, $t_3(y, z)$.

For example, each quasigroup satisfying the identity

$$\left(\left(u^{n_1} (\underbrace{(x \cdot (xu)^{n_2} y) \cdot x^{n_3}}_{t_1(x,y)}) \cdot u^{n_4} \right) \cdot (v \cdot (\underbrace{z^{n_5} x \cdot zu}_{t_3(x,z)}) v) u) \right) \cdot (\underbrace{y \cdot (zn^{n_6}) y^n}_{t_2(y,z)}) = v$$

is isotopic to a group. A bracketing in u^{n_1} , $(xu)^{n_2}$,... does not matter.

References

 F. Sokhatsky, Parastrophic symmetry in quasigroup theory, Bulletin of Donetsk National University. Series A: Natural Sciences. (2016), no. 1/2, 70–83.

CONTACT INFORMATION

Fedir Sokhatsky

Department of Mathematical Analysis and Differential Equations, Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine Email address: fmsokha@ukr.net

Key words and phrases. Functional equation, group isotope, quasigroup identity

Canonical decompositions of solutions of functional equation of generalized mediality

Fedir Sokhatsky, Diana Kirka

Let Q be a set, a mapping $f: Q^2 \to Q$ is called an invertible binary operation (=function), if it is invertible element in both semigroups $(\mathcal{O}_2; \bigoplus_0)$ and $(\mathcal{O}_2; \bigoplus_1)$, where \mathcal{O}_2 is the set of all binary operations defined on Q and

$$(f \underset{0}\oplus g)(x,y) := f(g(x,y),y), \qquad (f \underset{1}\oplus g)(x,y) := f(x,g(x,y)).$$

The set of all binary invertible functions is denoted by Δ_2 . A functional equation

$$F_1(F_2(x,y), F_3(u,v)) = F_4(F_5(x,u), F_6(y,v)),$$
(1)

where F_1, \ldots, F_6 are functional variables and x, y, u, v are individual variables, is called a *functional equation of generalized mediality*. The equation was solved in [1]. Namely, the following theorem was proved

THEOREM 1. A sequence (f_1, \ldots, f_6) of invertible functions defined on a set Q is a solution of (1) if and only if there exists a comutative group (Q; +, 0) and bijections $\alpha_1, \ldots, \alpha_6$ of Qsuch that

$$f_1(x,z) = \alpha_5 x + \alpha_6 z, \qquad f_2(x,y) = \alpha_5^{-1}(\alpha_1 x + \alpha_2 y), \qquad f_3(u,v) = \alpha_6^{-1}(\alpha_3 u + \alpha_4 v),$$

$$f_4(z,y) = \alpha_7 z + \alpha_8 y, \qquad f_5(x,u) = \alpha_7^{-1}(\alpha_1 x + \alpha_3 u), \qquad f_6(y,v) = \alpha_8^{-1}(\alpha_2 y + \alpha_4 v).$$

The sequence $(+, \alpha_1, \ldots, \alpha_8)$ will be called a *decomposition* of the solution (f_1, \ldots, f_6) . Theorem 1 proves that every solution has a decomposition and moreover every sequence uniquely defines a solution of (1). But the same solution may have different decomposition. For example, let θ be an arbitrary automorphism of the group (Q; +), it is easy to see that the sequence $(+, \theta\alpha_1, \ldots, \theta\alpha_8)$ defines the same solution of (1).

A decomposition $(+, \alpha_1, \ldots, \alpha_8)$ of a solution of (1) will be called *0-canonical* if 0 is a neutral element of the group (Q; +) and $\alpha_1 0 = \alpha_5 0 = \alpha_7 0 = 0$.

THEOREM 2. Every element $0 \in Q$ uniquely defines a canonical decomposition of an arbitrary solution of the functional equation of generalized mediality.