Properties of quotient modules composed of annihilator modules in Steenrod algebra

ALEXANDER N. VASILCHENKO

This work studies structures of modules $B(n) = (A(n-1)/A(n))^*$ dual to A(n-1)/A(n) as well as $A(n)^*$, $A(n)^+/A(n-1)^+$, $(A(n-1)/A(n))^*$, $A(n-1)^*/A(n)^*$ where A(n) are annihilators [1], all members of Steenrod algebra such that they null all cohomology elements from cohomology classes with degree less or equal then n and $A(n)^+ \in A^*$ is composed from annihilators of A(n) module from the dual Steenrod algebra A^* . Result is stated in

THEOREM 1. (1) Annihilator
$$A(n)^+$$
 of module $A(n)$ is A^* -comodule and $A(n)^+ \cong (A/A(n))^*$

(2) $A(n)^+$ is generated by all monomials of multiplication less or equal then n. $A(n)^+$ is induced A^* -comodule and

$$A(n)^* \cong A^*/A(n)^+$$

(3) $(A(n-1)/A(n))^*$ is a left induced A^* -comodule and as a vector space over Z/p has a basis generated by all monomials of multiplication n in A^* . There are isomorphisms:

$$(A(n-1)/A(n))^* \cong A(n)^+/A(n-1)^+ \cong A(n-1)^*/A(n)^*$$

- THEOREM 2. (1) B(n) is a graded Hopf comodule over Steenrod algebra A^* with coproduct $\phi_n^* : B(n) \to A^* \bigotimes B(n), \ \phi_n^*([\alpha]) = \sum_i \alpha_i' \bigotimes [\alpha_i'']$ induced by coproduct in comodule $A(n)^+$, with homomorphism property
- $\phi_n^*([\alpha]*[\beta]) = \phi_n^*([\alpha\beta]) = (\psi^* \otimes \psi_n^*)(Id_{A^*} \otimes T \otimes Id_{B(n_2)})(\phi_{n_1}^*([\alpha]) \otimes \phi_{n_2}^*([\beta])) \stackrel{def}{=} \phi_{n_1}^*([\alpha])*\phi_{n_2}^*([\beta])$ where $\psi_{n_1+n_2}^* : B(n_1) \bigotimes B(n_2) \to B(n_1+n_2)$ is a product defined by $\psi_{n_1+n_2}^*([\alpha] \otimes [\beta]) = [\psi^*(\alpha \otimes \beta)] = [\alpha\beta] = [\alpha]*[\beta]$ induced by product ψ^* in A^* , $n = n_1 + n_2$, T is a transposition, $[\alpha]$ in $B(n_1)$, and $[\beta]$ in $B(n_2)$.
 - (2) $B(n) = \bigoplus_{s} B(n)^{s}$ is the direct sum of Hopf comodules

$$B(n)^{s} = \{\tau_{0}^{s_{0}}\tau_{1}^{s_{1}}\tau_{2}^{s_{2}}\dots\xi_{1}^{r_{1}}\xi_{2}^{r_{2}}\xi_{3}^{r_{3}}\dots\in A^{*}|\sum_{i}s_{i}=s, n=\sum_{i}s_{i}+2\sum_{i}r_{i}\}$$

(3) $B(n)_t = \bigoplus_s B(n)_t^s$ is the direct sum of comodules $B(n)_t = (A(n)^+ \cap A_t^*)/(A(n-1)^+ \cap A_t^*)$ defined on the filtration of dual Steenrod algebra A^* by Hopf subalgebras

$$A_{-1}^* \subset A_0^* \subset A_1^* \subset \ldots \subset A_n^* \subset A_{n+1}^* \subset \ldots A^*$$

where $A_t^* = Z_p\{\xi_1, \xi_2, \ldots\} \bigotimes E\{\tau_0, \tau_1 \ldots \tau_t\}$ and $A_{-1}^* = Z_p\{\xi_1, \xi_2 \ldots\}$. The restrictions of the coproduct and product (1) on the filtration are well defined maps: $\phi_{n,t}^* : B(n)_t \to A^* \otimes B(n)_t$ and $\psi_{n_1n_2,t}^* : B(n_1)_t \otimes B(n_2)_t \to B(n_1 + n_2)_t$.

References

- 1. H.Cartan, Algebres d'Eilenberg-MacLane at Homotopie, Seminare Cartan ENS 7e (1954-1955).
- 2. N.Steenrod, D.B.A. Epstein, *Cohomological Operations*, Princeton Univ.Press (1962).

CONTACT INFORMATION

Alexander N. Vasilchenko

Cheluskintsev 19, 32, Samara, Russian Federation *Email address*: vass-alexandr@yandex.ru, vassalexandr88@gmail.com, phone +79372076904

Key words and phrases. Steenrod algebra, Hopf algebra, dual algebra, Hopf comodule, annihilator

Finite groups with given properties of normalizers of Sylow subgroups

Alexander Vasilyev, Tatsiana Vasilyeva, Anastasiya Melchanka

We consider only finite groups. We use notations and definitions from [1].

Let \mathfrak{F} be a non-empty formation. A subgroup H is called \mathfrak{F} -subnormal in G, if either H = G, or there exists a maximal chain of subgroups $H = H_0 \leq H_1 \leq \cdots \leq H_{n-1} \leq H_n = G$ such that $H_i^{\mathfrak{F}} \leq H_{i-1}$ for $i = 1, \ldots, n$.

Recall that the class of groups $w^*\mathfrak{F}$ is defined as follows:

 $w^*\mathfrak{F} = (G \mid \pi(G) \subseteq \pi(\mathfrak{F}) \text{ and every normalizer of Sylow subgroup of } G \text{ is } \mathfrak{F}\text{-subnormal in } G).$

THEOREM 1. Let \mathfrak{F} be a non-empty hereditary formation. Then the following statements are true.

- (1) $\mathfrak{F} \subseteq \mathrm{w}^* \mathfrak{F}$.
- (2) $\mathbf{w}^* \mathfrak{F} = \mathbf{w}^* (\mathbf{w}^* \mathfrak{F}).$

(3) If a formation $\mathfrak{F}_1 \subseteq \mathfrak{F}$ then $w^*\mathfrak{F}_1 \subseteq w^*\mathfrak{F}$.

(4) w* \mathfrak{F} is a formation and from $G \in \mathfrak{F}$ it follows that every Hall subgroup of G belongs to \mathfrak{F} .

According to [2], the arithmetic length of a soluble group G is defined as max $\{l_p(G)\}\)$, where $l_p(G)$ is p-length of the group G for all $p \in \pi(G)$. Note that the class $\mathfrak{L}_a(1)$ of all soluble groups whose arithmetic length ≤ 1 is a hereditary saturated Fitting formation.

THEOREM 2. Let \mathfrak{F} be a hereditary saturated formation and $\mathfrak{F} \subseteq \mathfrak{L}_a(1)$. Then $w^*\mathfrak{F} = \mathfrak{F}$.

COROLLARY 1. (1) [3] If \mathfrak{N}^2 is the class of all metanilpotent groups, then $w^*\mathfrak{N}^2 = \mathfrak{N}^2$.

(2) [3] If \mathfrak{NA} is the class of all groups G with the nilpotent commutator subgroup G', then $w^*\mathfrak{NA} = \mathfrak{NA}$.

(3)
$$\mathbf{w}^* \mathfrak{L}_a(1) = \mathfrak{L}_a(1).$$

We note that $w^* \mathfrak{N}^3 \neq \mathfrak{N}^3$.

References

- 1. A. Ballester-Bolinches and L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006.
- 2. V. N. Semenchuk, Minimal non F-subgroups Algebra and Logik, 18 (1979), no. 3, 348-382.
- A. F. Vasil'ev, Finite groups with strongly K-\$\vec{s}\$-subnormal Sylow subgroups, PFMT. 4(37) (2018), 66-71 (In Russian).