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Properties of quotient modules composed of annihilator

modules in Steenrod algebra

Alexander N. Vasilchenko

This work studies structures of modules 𝐵(𝑛) = (𝐴(𝑛− 1)/𝐴(𝑛))* dual to 𝐴(𝑛− 1)/𝐴(𝑛) as
well as 𝐴(𝑛)*, 𝐴(𝑛)+/𝐴(𝑛−1)+, (𝐴(𝑛−1)/𝐴(𝑛))*, 𝐴(𝑛−1)*/𝐴(𝑛)* where 𝐴(𝑛) are annihilators
[1] , all members of Steenrod algebra such that they null all cohomology elements from
cohomology classes with degree less or equal then 𝑛 and 𝐴(𝑛)+ ∈ 𝐴* is composed from
annihilators of 𝐴(𝑛) module from the dual Steenrod algebra 𝐴*. Result is stated in

Theorem 1. (1) Annihilator 𝐴(𝑛)+ of module 𝐴(𝑛) is 𝐴*-comodule and
𝐴(𝑛)+ ∼= (𝐴/𝐴(𝑛))*

(2) 𝐴(𝑛)+ is generated by all monomials of multiplication less or equal then 𝑛. 𝐴(𝑛)+ is
induced 𝐴*-comodule and

𝐴(𝑛)* ∼= 𝐴*/𝐴(𝑛)+

.
(3) (𝐴(𝑛− 1)/𝐴(𝑛))* is a left induced 𝐴*-comodule and as a vector space over 𝑍/𝑝 has a

basis generated by all monomials of multiplication 𝑛 in 𝐴*. There are isomorphisms:
(𝐴(𝑛− 1)/𝐴(𝑛))* ∼= 𝐴(𝑛)+/𝐴(𝑛− 1)+ ∼= 𝐴(𝑛− 1)*/𝐴(𝑛)*

Theorem 2. (1) 𝐵(𝑛) is a graded Hopf comodule over Steenrod algebra 𝐴* with coprod-
uct 𝜑*

𝑛 : 𝐵(𝑛)→ 𝐴*⨂︀𝐵(𝑛), 𝜑*
𝑛([𝛼]) =

∑︀
𝑖 𝛼

′
𝑖

⨂︀
[𝛼′′

𝑖 ] induced by coproduct in comodule
𝐴(𝑛)+, with homomorphism property

𝜑*
𝑛([𝛼]*[𝛽]) = 𝜑*

𝑛([𝛼𝛽]) = (𝜓*⊗𝜓*
𝑛)(𝐼𝑑𝐴*⊗𝑇⊗𝐼𝑑𝐵(𝑛2))(𝜑

*
𝑛1

([𝛼])⊗𝜑*
𝑛2

([𝛽]))
𝑑𝑒𝑓
= 𝜑*

𝑛1
([𝛼])*𝜑*

𝑛2
([𝛽])

where 𝜓*
𝑛1+𝑛2

: 𝐵(𝑛1)
⨂︀

𝐵(𝑛2)→ 𝐵(𝑛1 +𝑛2) is a product defined by 𝜓*
𝑛1+𝑛2

([𝛼]⊗ [𝛽]) =
[𝜓*(𝛼 ⊗ 𝛽)] = [𝛼𝛽] = [𝛼] * [𝛽] induced by product 𝜓* in 𝐴*, 𝑛 = 𝑛1 + 𝑛2, 𝑇 is a
transposition, [𝛼] in 𝐵(𝑛1), and [𝛽] in 𝐵(𝑛2).

(2) 𝐵(𝑛) =
⨁︀

𝑠𝐵(𝑛)𝑠 is the direct sum of Hopf comodules

𝐵(𝑛)𝑠 = {𝜏 𝑠00 𝜏 𝑠11 𝜏 𝑠22 . . . 𝜉𝑟11 𝜉
𝑟2
2 𝜉

𝑟3
3 . . . ∈ 𝐴*|

∑︁
𝑖

𝑠𝑖 = 𝑠 , 𝑛 =
∑︁
𝑖

𝑠𝑖 + 2
∑︁
𝑖

𝑟𝑖}

(3) 𝐵(𝑛)𝑡 =
⨁︀

𝑠𝐵(𝑛)𝑠𝑡 is the direct sum of comodules 𝐵(𝑛)𝑡 = (𝐴(𝑛)+∩𝐴*
𝑡 )/(𝐴(𝑛−1)+∩𝐴*

𝑡 )
defined on the filtration of dual Steenrod algebra 𝐴* by Hopf subalgebras

𝐴*
−1 ⊂ 𝐴*

0 ⊂ 𝐴*
1 ⊂ . . . ⊂ 𝐴*

𝑛 ⊂ 𝐴*
𝑛+1 ⊂ . . . 𝐴*

where 𝐴*
𝑡 = 𝑍𝑝{𝜉1, 𝜉2, . . .}

⨂︀
𝐸{𝜏0, 𝜏1 . . . 𝜏𝑡} and 𝐴*

−1 = 𝑍𝑝{𝜉1, 𝜉2 . . .}. The restrictions
of the coproguct and product (1) on the filtration are well defined maps: 𝜑*

𝑛,𝑡 : 𝐵(𝑛)𝑡 →
𝐴* ⊗𝐵(𝑛)𝑡 and 𝜓*

𝑛1𝑛2,𝑡
: 𝐵(𝑛1)𝑡 ⊗𝐵(𝑛2)𝑡 → 𝐵(𝑛1 + 𝑛2)𝑡.
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Finite groups with given properties of

normalizers of Sylow subgroups

Alexander Vasilyev, Tatsiana Vasilyeva, Anastasiya Melchanka

We consider only finite groups. We use notations and definitions from [1].
Let F be a non-empty formation. A subgroup 𝐻 is called F-subnormal in 𝐺, if either 𝐻 = 𝐺,

or there exists a maximal chain of subgroups 𝐻 = 𝐻0 ≤ 𝐻1 ≤ · · · ≤ 𝐻𝑛−1 ≤ 𝐻𝑛 = 𝐺 such that
𝐻F

𝑖 ≤ 𝐻𝑖−1 for 𝑖 = 1, . . . , 𝑛.

Recall that the class of groups w*F is defined as follows:
w*F = (𝐺 | 𝜋(𝐺) ⊆ 𝜋(F) and every normalizer of Sylow subgroup of 𝐺 is F-subnormal in

𝐺).

Theorem 1. Let F be a non-empty hereditary formation. Then the following statements are
true.

(1) F ⊆ w*F.
(2) w*F = w*(w*F).
(3) If a formation F1 ⊆ F then w*F1 ⊆ w*F.
(4) w*F is a formation and from 𝐺 ∈ F it follows that every Hall subgroup of 𝐺 belongs to F.

According to [2], the arithmetic length of a soluble group 𝐺 is defined as max {𝑙𝑝(𝐺)}, where
𝑙𝑝(𝐺) is 𝑝-length of the group 𝐺 for all 𝑝 ∈ 𝜋(𝐺). Note that the class L𝑎(1) of all soluble groups
whose arithmetic length ≤ 1 is a hereditary saturated Fitting formation.

Theorem 2. Let F be a hereditary saturated formation and F ⊆ L𝑎(1). Then w*F = F.

Corollary 1. (1) [3] If N2 is the class of all metanilpotent groups, then w*N2 = N2.
(2) [3] If NA is the class of all groups 𝐺 with the nilpotent commutator subgroup 𝐺′, then

w*NA = NA.
(3) w*L𝑎(1) = L𝑎(1).

We note that w*N3 ̸= N3.
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