$Q = \{ \rho \in Part X \mid \rho_j \leq \rho \text{ for some } j \in J \}.$ Then $S = S_n \bigcup \{ \alpha \in T_n \mid \pi_\alpha \in Q \}$ is cotransitive subsemigroup of semigroup T_n .

Obviously, subgroup S_n is also a cotransitive subsemigroup of semigroup T_n .

Listed subsemigroups exhaust all cotransitive subsemigroups of semigroup T_n .

The following concept was introduced by I. Levi in the paper [2]. Subsemigroup $S \subseteq T_n$ is called S_n -normal if for any $g \in S_n g^{-1}Sg = S$.

THEOREM 1. Cotransitive subsemigroup of semigroup T_n is S_n -normal if and only if it is a union of equivalence classes, corresponding to the same type of partition X.

References

1. R. P. Sullivan, *Ideals in transformation semigroups*, Comment. Math. Univ. Carolin. **19** (1978), 431–446.

2. I. Levi, Congruences on normal transformation semigroups Math. Jap. 52 (1980), no. 2, 247–261.

CONTACT INFORMATION

Tetiana Voloshyna

Department of Information Systems, Physics and Mathematics, Lesia Ukrainka Eastern European National University, Lutsk, Ukraine *Email address*: tetianavoloshyna@gmail.com

Key words and phrases. Cotransitive subsemigroups, transformation semigroup

On σ -local Fitting Classes

NIKOLAY T. VOROB'EV

Throughout this paper all groups are finite. The notations and terminologies are standard as in [1].

Let σ is some partition of the set of all primes \mathbb{P} . If G is a finite group and \mathfrak{F} is a Fitting class of finite groups, then the symbol $\sigma(G)$ denotes the set $\{\sigma_i : \sigma_i \cap \pi(|G|) \neq \emptyset\}$ and $\sigma(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma(G)$. Following [3], we call any function f of the form $f : \sigma \to \{\text{Fitting class}\}$ a Hartley σ -function (or simply H_{σ} -function), and we put $LR_{\sigma}(f) = (G : G = 1 \text{ or } G \neq 1 \text{ and } G^{\mathfrak{E}_{\sigma_i}\mathfrak{E}_{\sigma'_i}} \in f(\sigma_i) \text{ for all } \sigma_i \in \sigma(G)$). If there is a H_{σ} -function f such that $\mathfrak{F} = LR_{\sigma}(f)$, then we say that \mathfrak{F} is σ -local and f is a σ -local definition of \mathfrak{F} .

Note that in the case when $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}, \sigma$ -local Fitting class \mathfrak{F} is local [2] and we use symbol LR(f) instead $LR_{\sigma}(f)$. Let $\mathfrak{F} = LR_{\sigma}(f)$ for some H_{σ} -function f. Then we say that: (a) f is *integrated* if $f(\sigma_i) \subseteq \mathfrak{F}$ for all i; (b) f is full if $f(\sigma_i) \mathfrak{E}_{\sigma_i} = f(\sigma_i)$ for all i; (c) full *integrated* if f is full and integrated.

Recall that a Fitting class is a Lockett class, if the \mathfrak{F} -radical of the direct product of groups G and H is the direct product of the \mathfrak{F} -radical of G and \mathfrak{F} -radical of H for all groups G and H.

THEOREM 1. Every σ -local Fitting class can be defined by a unique full integrated H_{σ} -function F such that $F(\sigma_i) = F(\sigma_i) \mathfrak{E}_{\sigma_i} \subseteq \mathfrak{F}$ for all $\sigma_i \in \sigma(\mathfrak{F})$ and the value $F(\sigma_i)$ for every $\sigma_i \in \sigma(\mathfrak{F})$ is a Lockett class.

THEOREM 2. Every product $\mathfrak{F} \diamond \mathfrak{H}$ of two σ -local Fitting classes \mathfrak{F} and \mathfrak{H} is a σ -local Fitting class.

In the case when $\sigma = \sigma^1$, we get from Theorem 1 and Theorem 2 the well-known results [2] and [3] for local Fitting classes.

References

- 1. K. Doerk and T. Hawkes, *Finite soluble groups*, Berlin New York : Walter de Gruyter, 1992.
- 2. N. T. Vorob'ev, Local products of Fitting classes, Vesti AN BSSR, sez. fiz. matem. navuk, 6 (1991), 28–32.
- N. T. Vorob'ev, On largest integrated of Hartley's function, Proc. Gomel University, Probl. Algebra, 1 (2000), 8–13.

CONTACT INFORMATION

Nikolay T. Vorob'ev

Department of Mathematics, Masherov Vitebsk State University, Vitebsk, Belarus *Email address*: vorobyovnt@tut.by

Key words and phrases. Finite group, Fitting class, Hartley σ -function, σ -local Fitting class, Lockett class.

This research was partially supported by the State Research Programme "Convergence" of Belarus (2016 - 2020).

On σ -local Fitting sets

NIKOLAY T. VOROB'EV, KATHERINE LANTSETOVA

Throughout this paper all groups are finite. The notations and terminologies are standard as in [1], G always denotes a group, |G| is the order of G.

Let \mathbb{P} be the set of all primes. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. Following [2], σ is a partition of \mathbb{P} , that is, $\sigma = \{\sigma_i : i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i, \sigma_i \bigcap \sigma_j = \emptyset$ for all $i \neq j$; $\sigma(n) = \{\sigma_i : \sigma_i \bigcap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$. A set \mathcal{F} of subgroups of G [1] is called a *Fitting* set of G if the following conditions are satisfied: i) If $T \trianglelefteq S \in \mathcal{F}$, then $T \in \mathcal{F}$; ii) If $S, T \in \mathcal{F}$ and $S, T \trianglelefteq ST$, then $ST \in \mathcal{F}$; iii) If $S \in \mathcal{F}$ and $x \in G$, then $S^x \in \mathcal{F}$. A class \mathfrak{F} of groups is said a *Fitting* class [1] if it is closed under taking normal subgroups and products of normal \mathfrak{F} -subgroups. Let \mathfrak{E}_{σ_i} be the class of all σ_i -groups and $\mathfrak{E}_{\sigma'_i}$ be the class of all σ'_i -groups.

For a Fitting set \mathcal{F} of G and a Fitting class \mathfrak{X} [3], we call the set $\{H \leq G : H/H_{\mathcal{F}} \in \mathfrak{X}\}$ of subgroups of G the product of \mathcal{F} and \mathfrak{X} and denote it by $\mathcal{F} \odot \mathfrak{X}$.

A function $f : \sigma \to \{\text{Fitting sets of } G\}$ a Hartley σ -function (or simply H_{σ} -function of Gand we put

$$LFS_{\sigma}(f) = \{ H \le G : H = 1 \text{ or } H \ne 1 \text{ and } H^{\mathfrak{e}_{\sigma_i}\mathfrak{e}_{\sigma_i'}} \in f(\sigma_i) \text{ for all } \sigma_i \in \sigma(G) \}$$
(1)

DEFINITION 1. Let \mathcal{F} be a Fitting set of G. If there is an H_{σ} -function f such that $\mathcal{F} = LFS_{\sigma}(f)$, then we say that \mathcal{F} is σ -local and f is a σ -local definition of \mathcal{F} .

If $H \leq G$, then Fitset(H) will denote the intersection of all Fitting sets of G that contain H. Clearly Fitset(H) is again a Fitting set of G, and so we call it the *Fitting set generated by* H. A function f of Fitting set \mathcal{F} is called full, if $f(\sigma_i) = f(\sigma_i) \odot \mathfrak{E}_{\sigma_i}$ for all $\sigma_i \in \sigma(\mathcal{F})$, where $\sigma(\mathcal{F})$ is the set of all primes dividing the order of all \mathcal{F} -subgroups of G.

THEOREM 1. Let \mathcal{F} be a σ -local Fitting set of G. Then

- (a) \mathcal{F} can be defined by a unique minimal H_{σ} -function f such that
 - $f(\sigma_i) = Fitset(H \le G : H = (X^{\mathfrak{E}_{\sigma_i}\mathfrak{E}_{\sigma_i'}})^x, X \in \overline{\mathcal{F}} and x \in G) for all \sigma_i \in \sigma(\mathcal{F}).$
- (b) \mathcal{F} can be defined by a unique full minimal H_{σ} -function \underline{f} such that $\underline{\underline{f}} = Fitset(H \leq G : H^{\mathfrak{E}_{\sigma_i}} = (X^{\mathfrak{E}_{\sigma_i}\mathfrak{E}_{\sigma_i'}})^x, X \in \mathcal{F} \text{ and } x \in G) \odot \mathfrak{E}_{\sigma_i} \text{ for all } \sigma_i \in \sigma(\mathcal{F}).$