3) every non-abelian subgroup of the adjoint group R° is a subalgebra in R.

References

- S. V. Popovich and Ya. P. Sysak, Radical algebras subgroups of whose adjoint groups are subalgebras, Ukrainian Math. J. 49 (1997), 1855–1861.
- B. Amberg and L. S. Kasarin, On the adjoint group of a finite nilpotent p-algebra, J. Math. Sci. 102 (2000), 3979–3997.
- Ya. P. Sysak, The adjoint group of radical rings an related questions, Ischia Group Theory 2010, 344–365, World Sci. Publ., Hackensack, NJ, 2012.

CONTACT INFORMATION

Vladislav G. Yurashev

Department of Algebra and Topology, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Email address: yurashev150194@gmail.com

Key words and phrases. Nilpotent algebra, radical algebra, Miller-Moreno group, adjoint group

Commutative Bezout ring, which is a ring of neat range 1

Bohdan Zabavskyi, Olha Domsha

All rings considered will be commutative with nonzero unit.

Recall that ring is Bezout ring if it finitely generated ideals is principal. Ring R is said to have a stable range 2 if for every elements $a, b, c \in R$ such that aR + bR + cR = R we have (a + cx)R + (b + cy)R = R for some elements $x, y \in R$. Ring R is called an elementary divisor ring if for any matrix A of order $n \times m$ over R there exist invertible matrices $P \in GL_n(R)$ and $Q \in GL_m(R)$ such that PAQ = D is a diagonal matrix, $D = (d_{ii})$ and $d_{i+1,i+1}R \subset d_{ii}R$. A ring R is called a clean ring if for any $a \in R$ there exist invertible element $u \in R$ and idempotent $e \in R$ such that a = e + u. Element $a \in R$ is called a neat element if factor-ring R/aR is a clean ring. Ring R is called a ring of neat range 1 if from condition aR + bR = R implies that a + btis a neat element for some $t \in R$.

PROPOSITION 1. Let R be a commutative Bezout ring of neat range 1. Then for any ideal I of R factor-ring R/I is a ring of neat range 1.

PROPOSITION 2. A commutative Bezout ring is a ring of neat range 1 if and only if factor-ring R/J(R) is a ring of neat range 1 (where J(R) – is Jacobson radical).

THEOREM 1. Commutative Bezout ring in which all zero divisors are in Jacobson radical is an elementary divisor ring if and only if it is a ring of neat range 1.

References

1. B. Zabavsky *Diagonal reduction of matrices over rings*, Mathematical Studies, Monograph Series, volume XVI, VNTL Publishers, Lviv, 2012.

CONTACT INFORMATION

Bohdan Zabavskyi

Ivan Franko National University of Lviv, Lviv, Ukraine *Email address*: zabavskii@gmail.com

Olha Domsha

Lviv Regional Institute for Public Administration of the National Academy for Public Administration under the President of Ukraine, Lviv, Ukraine *Email address:* olya.domsha@ukr.net

Key words and phrases. An elementary divisor ring, a ring of neat range 1

J-Noetherian Bezout domain which are not of stable range 1

Bohdan Zabavsky, Oleh Romaniv

All rings considered will be commutative and have identity.

A ring R is a ring of stable range 1 if for any $a, b \in R$ such that aR + bR = R we have (a + bt)R = R for some $t \in R$.

An element a is an element of stable range 1 if for any $b \in R$ such that aR + bR = R we have a + bt is an invertible element for some $t \in R$.

An element $a \in R$ is an element of almost stable range 1 if R/aR is a ring of stable range 1. By a Bezout ring we mean a ring in which all finitely generated ideals are principal.

By a J-ideal of R we mean an intersection of maximal ideals of R.

A ring R is J-Noetherian provided R has maximum condition of J-ideals.

A commutative ring R is called an elementary divisor ring [3] if for an arbitrary matrix A of order $n \times m$ over R there exist invertible matrices $P \in GL_n(R)$ and $Q \in GL_m(R)$ such that

PAQ = D is diagonal matrix, $D = (d_{ii})$,

 $d_{i+1,i+1}R \subset d_{ii}R.$

Let R be a Bezout domain. An element $a \in R$ is called a neat element if for every elements $b, c \in R$ such that bR + cR = R there exist $r, s \in R$ such that a = rs where rR + bR = R, sR + cR = R and rR + sR = R. A Bezout domain is said to be of neat range 1 if for any $c, b \in R$ such that cR + bR = R there exists $t \in R$ such that a + bt is a neat element.

THEOREM 1. A commutative Bezout domain R is an elementary divisor domain if and only if R is a ring of neat range 1.

THEOREM 2. A nonunit divisor of a neat element of a commutative Bezout domain is a neat element.

THEOREM 3. Let R be a J-Noetherian Bezout domain which is not a ring of stable range 1. Then in R there exists an element $a \in R$ such that R/aR is a local ring.

By [8], any adequate element of a commutative Bezout ring is a neat element. An element a of a domain R is said to be adequate, if for every element $b \in R$ there exist elements $r, s \in R$ such that (1) a = rs; (2) rR + bR = R (3) $\hat{s}R + bR \neq R$ for any $\hat{s} \in R$ such that $sR \subset \hat{s}R \neq R$. A domain R is called adequate if every nonzero element of R is adequate [4].

THEOREM 4. Let R be a commutative Bezout element and a is non-zero nonunit element of R. If R/aR is local ring, then a is an adequate element.

THEOREM 5. Let R be a J-Noetherian Bezout domain which is not a ring of stable range 1. Then in R there exists a nonunit adequate element.

THEOREM 6. Let R be a Bezout domain in which every nonzero nonunit element has only finitely many prime ideals minimal over it. Then the factor ring R/aR is the finite direct sum of valuation rings.