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The Generalized Weyl Poisson algebras and their Poisson

simplicity criterion

Volodymyr Bavula

A new large class of Poisson algebras, the class of generalized Weyl Poisson algebras, is
introduced. It can be seen as Poisson algebra analogue of generalized Weyl algebras. A Poisson
simplicity criterion is given for generalized Weyl Poisson algebras and an explicit description of
the Poisson centre is obtained. Many examples are considered.
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The specialized characters of the representation of the Lie

algebra 𝑠𝑙3 in terms of 𝑞- and (𝑞, 𝑝)-numbers

Leonid Bedratyuk, Ivan Kachuryk

Let Γ𝜆 be the standard irreducible complex representation of sl3 with the highest weight
𝜆 = (𝜆1, 𝜆2) ∈ Z2, dim Γ𝜆 = (𝜆1 + 1)(𝜆2 + 1)(𝜆1 + 𝜆2)/2.

Denote by Λ the weight lattice of all finite dimensional representation of sl3, and let Z(Λ) be
their group ring. The ring Z(Λ) is free Z-module with the basis elements 𝑒(𝜆), 𝜆 = (𝜆1, 𝜆2) ∈ Λ,
𝑒(𝜆)𝑒(𝜇) = 𝑒(𝜆+ 𝜇), 𝑒(0) = 1. Let Λ𝜆 be the set of all weights of the representation Γ𝜆. Then
the formal character Char(Γ𝜆) is defined as formal sum

∑︀
𝜇∈Λ𝜆

𝑛𝜆(𝜇)𝑒(𝜇) ∈ Z(Λ), here 𝑛𝜆(𝜇)

is the multiplicities of the weight 𝜇 in the representation Γ𝜆. By replacing 𝑒(𝑚,𝑛) := 𝑞𝑛𝑝𝑚 we
obtain the specialized expression for the character of Char(Γ(𝑛,𝑚)) ≡ [𝑛,𝑚]𝑞,𝑝.

We establish several relations between the specialized characters [𝑛,𝑚]𝑞𝑝 and the quantum
(𝑞, 𝑝)-numbers

[𝑟]𝑞,𝑝 =
𝑞𝑟 − 𝑝−𝑟

𝑞 − 𝑝−1
,

and in some cases between different types of 𝑞-numbers.
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We obtain the following expression
[𝑛, 0]𝑞,𝑝 − (𝑝𝑞)−1[𝑛− 1, 0]𝑞,𝑝 = [𝑛+ 1]𝑞,𝑝, [−1, 0]𝑞,𝑝 = 0, [0, 0]𝑞,𝑝 = 1.

As a consequence, we obtain that

[𝑛, 0]𝑞,𝑝 =
𝑛+1∑︁
𝑘=1

(𝑝𝑞−1)𝑛−𝑘+1[𝑘]𝑞,𝑝.

By 𝑝 = 𝑞 we get [𝑛, 0]𝑞,𝑞 − [𝑛− 1, 0]𝑞,𝑞 = [𝑛+ 1]𝑞,𝑞, where [𝑛]𝑞 ≡ [𝑛]𝑞,𝑞 is the 𝑞-number and

[𝑛, 0]𝑞,𝑞 =
𝑛+1∑︁
𝑘=1

[𝑘]𝑞.

Further calculations lead to the formulas

[𝑛− 1, 0]𝑞,𝑝 =
[𝑛+ 1]𝑞,𝑝 − (𝑞𝑝−1)2[𝑛]𝑞,𝑝 − (𝑝𝑞−1)𝑛[1]𝑞,𝑝

[2]𝑞,𝑝 − (𝑞𝑝−1)2 − (𝑝𝑞−1)
,

[0, 𝑛− 1]𝑞,𝑝 =
(𝑝𝑞−1)𝑛−1[𝑛+ 1]𝑞,𝑝 − (𝑝𝑞−1)𝑛[𝑛]𝑞,𝑝 − (𝑞𝑝−1)𝑛+1

[2]𝑞,𝑝 − (𝑞𝑝−1)2 − (𝑝𝑞−1)
.

In particular we find

[𝑛− 1, 0]𝑞,𝑞 = [0, 𝑛− 1]𝑞,𝑞 =
[𝑛]𝑞1/2 [𝑛+ 1]𝑞1/2

[2]𝑞1/2
,

lim
𝑞→1

[𝑛− 1, 0]𝑞,𝑞 =
𝑛(𝑛+ 1)

2
.

It turns out that in the general case the characters [𝑛,𝑚]𝑞𝑝 can also be represented through
(𝑞, 𝑝)-numbers [𝑛]𝑞𝑝, and in partial cases, through known in theoretical and mathematical physics
of different types of 𝑞 -numbers, which are considered as exponential deformations of the usual
𝑐-number 𝑟. To show this, we use the theorem

[𝑛,𝑚]𝑞,𝑝 = [𝑛, 0]𝑞,𝑝[0,𝑚]𝑞,𝑝 − [𝑛− 1, 0]𝑞,𝑝[0,𝑚− 1]𝑞,𝑝,

and obtain the following result

[𝑛,𝑚]𝑞,𝑝 = [𝑚,𝑛]𝑝,𝑞 = (𝑝𝑞−1)𝑚
[𝑛+𝑚+ 2]𝑞,𝑝 − (𝑞𝑝−1)2(𝑚+1)[𝑛+ 1]𝑞,𝑝 − (𝑝𝑞−1)𝑛+1[𝑚+ 1]𝑞,𝑝

[2]𝑞,𝑝 − (𝑞𝑝−1)2 − (𝑝𝑞−1)
.

By 𝑚 = 𝑛 we get

[𝑛, 𝑛]𝑞,𝑝 = [𝑛+ 1]𝑞,𝑝[𝑛+ 1]
𝑞𝑝−

1
2
[𝑛+ 1]

𝑝𝑞−
1
2

If 𝑝→ 𝑞−1 then the specialized characters can be expressed in terms of 𝑞-deformed numbers
of the form 𝑞𝑟−1𝑟(= lim𝑝→𝑞−1 [𝑟]𝑞𝑝:

[𝑛,𝑚]𝑞𝑞−1 = lim
𝑝→𝑞−1

[𝑛,𝑚]𝑝𝑞 =
𝑞𝑛+

𝑚+3
2 (𝑛+ 1)[𝑚+ 1]𝑞3/2 − 𝑞−𝑛−𝑚+3

2 (𝑚+ 1)[𝑛+ 1]𝑞3/2

𝑞3/2 − 𝑞−3/2
.

Also we have

[𝑛− 1, 0]𝑞,𝑞−1 = 𝑞−2(𝑛−1)1− 𝑞3𝑛(𝑛(1− 𝑞3) + 1)

(1− 𝑞3)2
= [0, 𝑛− 1]𝑞,𝑞−1

⃒⃒
𝑞↔𝑞−1

[𝑛, 𝑛]𝑞,𝑞−1 = (𝑛+ 1)[𝑛+ 1]2𝑞3/2

For the case 𝑝 = 𝑞 the specialized characters also can be expressed in terms of 𝑞-deformed
numbers [𝑟]𝑞 = [𝑟]𝑞,𝑞 = (𝑞𝑛 − 𝑞−𝑛)/(𝑞 − 𝑞−1) :

[𝑛,𝑚]𝑞,𝑞 =
[𝑛+ 1]𝑞1/2 [𝑚+ 1]𝑞1/2 [𝑛+𝑚+ 2]𝑞1/2

[2]𝑞1/2
,

[𝑛, 𝑛]𝑞,𝑞 =
[𝑛+ 1]2

𝑞1/2
[2(𝑛+ 1)]𝑞1/2

[2]𝑞1/2
.
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For the limit 𝑞 → 𝑞−1 we get

{𝑛,𝑚} ≡ lim
𝑞→1

[𝑛,𝑚]𝑞,𝑞 = lim
𝑞→1

[𝑛,𝑚]𝑞,𝑞−1 =
1

2
(𝑛+ 1)(𝑚+ 1)(𝑛+𝑚+ 2) = dim Γ𝑛,𝑚,

{𝑛− 1, 𝑛− 1} = 𝑛3 = dim Γ𝑛−1,𝑛−1,

{𝑛− 1, 0} = {0, 𝑛− 1} =
𝑛(𝑛+ 1)

2
= dim Γ𝑛−1,0

For 𝑝→ 1 the (𝑞, 𝑝)-numbers [𝑟]𝑞,𝑝 turn into the Jackson 𝑞-numbers [𝑟)𝑞 ≡ (1− 𝑞𝑛)/(1− 𝑞).
We prove that

[𝑛,𝑚]𝑞,1 = 𝑞−(𝑛+𝑚) [𝑛+𝑚+ 2)𝑞[𝑛+ 1)𝑞[𝑚+ 1)𝑞
[2]𝑞

,

[𝑛,𝑚]𝑞,1 = 𝑞−2𝑛
[𝑛+ 1)2𝑞[2(𝑛+ 1))𝑞

[2]𝑞
,

[𝑛− 1, 0]𝑞,1 =
𝑞−𝑛[𝑛)𝑞[𝑛+ 1)𝑞

[2]𝑞
.
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Some properties of generelized hypergeometric Appell

polynomials

Leonid Bedratyuk, Nataliia Luno

In [1], P.Appell presented the sequence of polynomials {𝐴𝑛(𝑥)}, 𝑛 = 0, 1, 2, . . . which satisfies
the following relation

𝐴′
𝑛(𝑥) = 𝑛𝐴𝑛−1(𝑥),

and possesses the exponential generating function

𝐴(𝑡)𝑒𝑥𝑡 =
∞∑︁
𝑛=0

𝐴𝑛(𝑥)
𝑡𝑛

𝑛!
,

where 𝐴(𝑡) is a formal power series

𝐴(𝑡) = 𝑎0 + 𝑎1𝑡+ 𝑎2
𝑡2

2!
+ · · ·+ 𝑎𝑛

𝑡𝑛

𝑛!
+ · · · , 𝑎0 ̸= 0.

The Appell type polynomials appear at the different areas of mathematics, namely, at
special functions, general algebra, combinatorics and number theory. Resently, the Appell type
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