PROPOSITION 2. Let a variant $(S, *_a)$ be isomorphic to the finite Brandt semigroup. Then S is finite complete 0-simple semigroup.

From the [1] we have that if a variant $(S, *_a)$ is 0-simple, then S is 0-simple. In the [2] we can find that a semigroup S is complete 0-simple if and only if the semigroup S does not contain bicyclic semigroup.

Let us consider a variant $(S, *_a)$ isomorphic to the finite Brandt semigroup. Since by the proposition 2 the semigroup S is finite complete 0-simple. Then let us consider more general case when the semigroup S is complete 0-simple. Then by the Rees theorem [3] a semigroup S is isomorphic to a Rees matrix semigroup over the group with zero $\mathcal{M}^0(G^0; I, J; P)$. Then $(S, *_a) \cong (\mathcal{M}^0(G^0; I, J; P), *_{A_{ij}})$ The next proposition is obvious.

PROPOSITION 3. A variant of the semigroup $\mathcal{M}^0(G^0; I, J; P)$ generated by any non zero Rees matrix A_{ij} is a Rees matrix semigroup with sandwich matrix $Q = P \cdot A_{ij} \cdot P$.

PROPOSITION 4. Let matrix Q have a zero on lk position then all k column or l row is zero, or in the same time k column and l row.

We proved the next important proposition.

PROPOSITION 5. Any variant $(\mathcal{M}^0(G^0; I, J; P), *_{A_{ij}})$ of Rees matrix semigroup is not isomorphic to Rees matrix semigroup with unit sandwich matrix $\mathcal{M}^0((G')^0; K, K; \Delta)$.

THEOREM 1. Let semigroup S does not contain bicyclic subsemigroup and $a \in S$, then $(S, *_a)$ is not a Brandt semigroup.

Since a finite semigroup does not contain a bicyclic semigroup we have the next corollary.

COROLLARY 1. Finite Brand semigroup is not a variant of any semigroup.

For the semigroup which has a bicyclic subsemigroup we have solved the case when sandwich element belongs to the bicyclic subsemigroup.

THEOREM 2. Let a semigroup S contain subsemigroup $\mathfrak{B}i$, and $a \in \mathfrak{B}i$. Then the variant $(S, *_a)$ is not a Brandt semigroup.

References

- 1. J. Hickey, Semigroups under a sandwich operation. // Proc. Edinburg Math. Soc. (2) 26(3) (1983), 371-382.
- 2. O. Andersen, The abstract semigroup structure, PhD Thesis, Hamburg, 1952 (in German).
- A. Clifford, G. Preston, *The Algebraic Theory of Semigroups* Volume 1, American Mathematical Society, Providence, 1961 (1977).

CONTACT INFORMATION

Oleksandra Desiateryk

Faculty of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Email address: sasha.desyaterik@gmail.com

Key words and phrases. Brandt semigroup, variant, sandwich semigroup, bicyclic semigroup.

Quasigroups with some Bol-Moufang type identities

NATALIA DIDURIK, VICTOR SHCHERBACOV

Groupoid (Q, *) is called a quasigroup, if the following conditions are true [1]: $(\forall u, v \in Q)(\exists ! x, y \in Q)(u * x = v \& y * u = v)$.

We research the existence of left and right identity elements (i.e., left and right unit) in quasigroups with Bol-Moufang type identities which are listed in classical Fenvesh' article [2]. Numeration of identities is taken from [2, 3].

THEOREM 1. Quasigroup (Q, \cdot) with any from identities F_1 , F_3 , F_5 , F_{10} , F_{11} , F_{14} , F_{18} , F_{20} , F_{21} , F_{24} , F_{25} , F_{28} , F_{31} , F_{32} , F_{33} , F_{34} , F_{47} , F_{50} , F_{55} , F_{58} is a group.

We notice, formulated theorem is connected with the following Belousov's Problem # 18 [1].

From what identities, that are true in a quasigroup $Q(\cdot)$, does it follow that the quasigroup $Q(\cdot)$ is a loop? (An example of such identity is the identity of associativity).

References

- F. Fenyves. Extra loops. II. On loops with identities of Bol-Moufang type. Publ. Math. Debrecen, 16:187–192, 1969.
- T.G. Jaíyeola, E. Ilojide, M. O. Olatinwo, and F. Smarandache. On the Classification of Bol-Moufang Type of Some Varieties of Quasi Neutrosophic Triplet Loop (Fenyves BCI-Algebras). Symmetry, 10:1–16, 2018. doi:10.3390/sym10100427.

CONTACT INFORMATION

Natalia Didurik

State University Dimitrie Cantemir, Chişinău Moldova Email address: natnikkr83@mail.ru

Victor Shcherbacov

Institute of Mathematics and Computer Science, Chişinău Moldova Email address: victor.scerbacov@math.md

Key words and phrases. Quasigroup, group, unit, Bol-Moufang identity

Morita equivalence of non-commutative schemes

Yuriy Drozd

A non-commutative scheme X is, by definition, a pair (X, \mathcal{O}_X) , where X is a scheme and \mathcal{O}_X is a sheaf of \mathcal{O}_X -algebras which is quasi-coherent as a \mathcal{O}_X -module. We denote by $\mathsf{Qcoh} X$ the category of quasi-coherent \mathcal{O}_X -modules and by $\mathsf{Coh} X$ the category of coherent \mathcal{O}_X -modules. We call the non-commutative scheme X noetherian if X is a noetherian scheme and \mathcal{O}_X is coherent as an \mathcal{O}_X -module.

- A quasi-coherent $\mathcal{O}_{\mathbb{X}}$ -module \mathcal{P} is said to be
 - locally projective if every point $x \in X$ has an affine open neighbourhood U such that $\mathcal{P}(U)$ is a projective $\mathcal{O}_{\mathbb{X}}(U)$ -module.
 - local generator if every point $x \in X$ has an affine open neighbourhood U such that for some n there is an epimorphism of modules $n\mathcal{P}(U) \to \mathcal{O}_{\mathbb{X}}(U)$.
 - *local progenerator* if it is a locally projective local generator.

THEOREM. Let $\mathbb{X} = (X, \mathcal{O}_{\mathbb{X}})$ and $\mathbb{Y} = (Y, \mathcal{O}_{\mathbb{Y}})$ be noetherian non-commutative schemes.

- (1) Let $f: X \to Y$ be an isomorphism of schemes and $\mathcal{P} \in \mathsf{Coh} \mathbb{X}$ be a local progenerator such that $\mathcal{E}nd_{\mathcal{O}_{\mathbb{X}}}\mathcal{P} \simeq (f^*\mathcal{O}_{\mathbb{Y}})^{\mathrm{op}}$. Then the functor $\Phi_{\mathcal{P}}: \mathsf{Qcoh} \mathbb{X} \to \mathsf{Qcoh} \mathbb{Y}$ such that $\Phi_{\mathcal{P}}\mathcal{F} = f_*\mathcal{H}om_{\mathcal{O}_{\mathbb{X}}}(\mathcal{P}, \mathcal{F})$ is an equivalence.
- (2) On the contrary, if Φ : Qcoh X \rightarrow Qcoh Y is an equivalence of categories, there is a unique isomorphism $f: X \rightarrow Y$ and a unique (up to isomorphism) local progenerator $\mathcal{P} \in \mathsf{Coh} X$ such that $\mathcal{E}nd_{\mathcal{O}_X} \mathcal{P} \simeq (f^*\mathcal{O}_Y)^{\mathrm{op}}$ and $\Phi \simeq \Phi_{\mathcal{P}}$.

^{1.} V.D. Belousov. Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967. (in Russian).