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Proposition 2. Let a variant (𝑆, *𝑎) be isomorphic to the finite Brandt semigroup. Then
𝑆 is finite complete 0-simple semigroup.

From the [1] we have that if a variant (𝑆, *𝑎) is 0-simple, then 𝑆 is 0-simple. In the [2] we
can find that a semigroup 𝑆 is complete 0-simple if and only if the semigroup 𝑆 does not contain
bicyclic semigroup.

Let us consider a variant (𝑆, *𝑎) isomorphic to the finite Brandt semigroup. Since by the
proposition 2 the semigroup 𝑆 is finite complete 0-simple. Then let us consider more general
case when the semigroup 𝑆 is complete 0-simple. Then by the Rees theorem [3] a semigroup
𝑆 is isomorphic to a Rees matrix semigroup over the group with zeroℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ). Then
(𝑆, *𝑎) ∼= (ℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ), *𝐴𝑖𝑗

) The next proposition is obvious.

Proposition 3. A variant of the semigroup ℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ) generated by any non zero
Rees matrix 𝐴𝑖𝑗 is a Rees matrix semigroup with sandwich matrix 𝑄 = 𝑃 · 𝐴𝑖𝑗 · 𝑃 .

Proposition 4. Let matrix 𝑄 have a zero on 𝑙𝑘 position then all 𝑘 column or 𝑙 row is zero,
or in the same time 𝑘 column and 𝑙 row.

We proved the next important proposition.

Proposition 5. Any variant (ℳ0(𝐺0; 𝐼, 𝐽 ;𝑃 ), *𝐴𝑖𝑗
) of Rees matrix semigroup is not iso-

morphic to Rees matrix semigroup with unit sandwich matrix ℳ0((𝐺′)0;𝐾,𝐾;△).

Theorem 1. Let semigroup 𝑆 does not contain bicyclic subsemigroup and 𝑎 ∈ 𝑆, then (𝑆, *𝑎)
is not a Brandt semigroup.

Since a finite semigroup does not contain a bicyclic semigroup we have the next corollary.

Corollary 1. Finite Brand semigroup is not a variant of any semigroup.

For the semigroup which has a bicyclic subsemigroup we have solved the case when sandwich
element belongs to the bicyclic subsemigroup.

Theorem 2. Let a semigroup 𝑆 contain subsemigroup Bi, and 𝑎 ∈ Bi. Then the variant
(𝑆, *𝑎) is not a Brandt semigroup.
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Quasigroups with some Bol-Moufang type identities

Natalia Didurik, Victor Shcherbacov

Groupoid (𝑄, *) is called a quasigroup, if the following conditions are true [1]: (∀𝑢, 𝑣 ∈
𝑄)(∃!𝑥, 𝑦 ∈ 𝑄)(𝑢 * 𝑥 = 𝑣& 𝑦 * 𝑢 = 𝑣).
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We research the existence of left and right identity elements (i.e., left and right unit) in
quasigroups with Bol-Moufang type identities which are listed in classical Fenvesh’ article [2].
Numeration of identities is taken from [2, 3].

Theorem 1. Quasigroup (𝑄, ·) with any from identities 𝐹1, 𝐹3, 𝐹5, 𝐹10, 𝐹11, 𝐹14, 𝐹18, 𝐹20,
𝐹21, 𝐹24, 𝐹25, 𝐹28, 𝐹31, 𝐹32, 𝐹33, 𝐹34, 𝐹47, 𝐹50, 𝐹55, 𝐹58 is a group.

We notice, formulated theorem is connected with the following Belousov’s Problem # 18 [1].
From what identities, that are true in a quasigroup 𝑄(·), does it follow that the quasigroup

𝑄(·) is a loop? (An example of such identity is the identity of associativity).
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Morita equivalence of non-commutative schemes

Yuriy Drozd

A non-commutative scheme X is, by definition, a pair (𝑋,𝒪X), where 𝑋 is a scheme and 𝒪X
is a sheaf of 𝒪𝑋-algebras which is quasi-coherent as a 𝒪𝑋-module. We denote by QcohX the
category of quasi-coherent 𝒪X-modules and by CohX the category of coherent 𝒪X-modules. We
call the non-commutative scheme X noetherian if 𝑋 is a noetherian scheme and 𝒪X is coherent
as an 𝒪𝑋-module.

A quasi-coherent 𝒪X-module 𝒫 is said to be
∙ locally projective if every point 𝑥 ∈ 𝑋 has an affine open neighbourhood 𝑈 such that
𝒫(𝑈) is a projective 𝒪X(𝑈)-module.
∙ local generator if every point 𝑥 ∈ 𝑋 has an affine open neighbourhood 𝑈 such that for
some 𝑛 there is an epimorphism of modules 𝑛𝒫(𝑈)→ 𝒪X(𝑈).
∙ local progenerator if it is a locally projective local generator.

Theorem. Let X = (𝑋,𝒪X) and Y = (𝑌,𝒪Y) be noetherian non-commutative schemes.
(1) Let 𝑓 : 𝑋 → 𝑌 be an isomorphism of schemes and 𝒫 ∈ CohX be a local progenerator

such that ℰnd𝒪X𝒫 ≃ (𝑓 *𝒪Y)op. Then the functor Φ𝒫 : QcohX → QcohY such that
Φ𝒫ℱ = 𝑓*ℋom𝒪X(𝒫 ,ℱ) is an equivalence.

(2) On the contrary, if Φ : QcohX → QcohY is an equivalence of categories, there is a
unique isomorphism 𝑓 : 𝑋 → 𝑌 and a unique (up to isomorphism) local progenerator
𝒫 ∈ CohX such that ℰnd𝒪X𝒫 ≃ (𝑓 *𝒪Y)op and Φ ≃ Φ𝒫 .
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