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Theorem 2. Let 𝑅 be a Bezout ring of stable range 2. A regular element 𝑎 ∈ 𝑅 is
pseudo-irreducible iff 𝑅/𝑎𝑅 is an indecomposable ring.

Theorem 3. Let 𝑅 be a Bezout ring of stable range 2. A regular element 𝑎 ∈ 𝑅 is an
adequate element iff 𝑅/𝑎𝑅 is a semiregular ring.

Theorem 4. Let 𝑅 be a Bezout ring of stable range 2 and of Gelfand range 1. Then 𝑅 is
an elementary divisor ring.

Theorem 5. Let 𝑅 be a Bezout domain. Then the following statements are equivalent
1) 𝑅 is an elementary divisor ring.
2) 𝑅 is a ring of Gelfand range 1.

Theorem 6. Let 𝑅 be a semihereditary PM Bezout ring. Then 𝑅 is an elementary divisor
ring.
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Bezout rings with nonzero principal Jacobson radical

Andrii Gatalevych, Anatolii Dmytruk

All rings considered are commutative with 1 ̸= 0. Let us consider the example of M. Henriksen
𝑅 = {𝑧0 + 𝑎1𝑥+ 𝑎2𝑥+ . . . | 𝑧0 ∈ 𝑍, 𝑎𝑖 ∈ 𝑄} [1]. It has been constructed as an example of a
commutative Bezout domain, which is an elementary divisor ring and is not an adequate ring.
We note that its Jacobson radical is a nonzero prime ideal, which is not a principal ideal and
stable range of the ring 𝑅 equals 2. The issue arises about the structure of a Bezout domain in
which a Jacobson radical is a nonzero principal ideal.

Definition 1. A ring 𝑅 is called a Bezout ring if its every finitely generated ideal is
principal.

Definition 2. A ring 𝑅 is called a ring of stable range 1, if for any 𝑎, 𝑏 ∈ 𝑅 such that
𝑎𝑅 + 𝑏𝑅 = 𝑅, there exists such an element 𝑦 ∈ 𝑅 that (𝑎+ 𝑏𝑦)𝑅 = 𝑅 [2].

Theorem 1. Let 𝑅 be a commutative Bezout domain in which a Jacobson radical 𝐽(𝑅) is a
nonzero principal ideal. Then 𝑅 is a ring of stable range 1.

Theorem 2. Let 𝑅 be a commutative Bezout domain, and let for the element 𝑎 ∈ 𝑅∖{0}, a
Jacobson radical of the factor ring 𝐽(𝑅/𝑎𝑅) is a nonzero principal ideal. Then the element 𝑎 is
contained only in the finite number of maximal ideals that are principal.
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On automorphisms of superextensions of semigroups

Volodymyr Gavrylkiv

A familyℳ of non-empty subsets of a set 𝑋 is called an upfamily if for each set 𝐴 ∈ℳ any
subset 𝐵 ⊃ 𝐴 of 𝑋 belongs toℳ. By 𝜐(𝑋) we denote the set of all upfamilies on a set 𝑋. Each
family ℬ of non-empty subsets of 𝑋 generates the upfamily {𝐴 ⊂ 𝑋 : ∃𝐵 ∈ ℬ (𝐵 ⊂ 𝐴)} which
we denote by ⟨𝐵 ⊂ 𝑋 : 𝐵 ∈ ℬ⟩. An upfamily ℱ that is closed under taking finite intersections
is called a filter. A filter 𝒰 is called an ultrafilter if 𝒰 = ℱ for any filter ℱ containing 𝒰 . The
family 𝛽(𝑋) of all ultrafilters on a set 𝑋 is called the Stone-Čech compactification of 𝑋, see [6].
An ultrafilter ⟨{𝑥}⟩, generated by a singleton {𝑥}, 𝑥 ∈ 𝑋, is called principal. Each point 𝑥 ∈ 𝑋
is identified with the principal ultrafilter ⟨{𝑥}⟩ generated by the singleton {𝑥}, and hence we
can consider 𝑋 ⊂ 𝛽(𝑋) ⊂ 𝜐(𝑋). It was shown in [3] that any associative binary operation
* : 𝑆 × 𝑆 → 𝑆 can be extended to an associative binary operation * : 𝜐(𝑆)× 𝜐(𝑆)→ 𝜐(𝑆) by
the formula

ℒ *ℳ =
⟨ ⋃︁

𝑎∈𝐿

𝑎 *𝑀𝑎 : 𝐿 ∈ ℒ, {𝑀𝑎}𝑎∈𝐿 ⊂ℳ
⟩

for upfamilies ℒ,ℳ∈ 𝜐(𝑆). In this case the Stone-Čech compactification 𝛽(𝑆) is a subsemigroup
of the semigroup 𝜐(𝑆). The semigroup 𝜐(𝑆) contains as subsemigroups many other important
extensions of 𝑆. In particular, it contains the semigroup 𝜆(𝑆) of maximal linked upfamilies. An
upfamily ℒ of subsets of 𝑆 is said to be linked if 𝐴 ∩𝐵 ̸= ∅ for all 𝐴,𝐵 ∈ ℒ. A linked upfamily
ℳ of subsets of 𝑆 is maximal linked if ℳ coincides with each linked upfamily ℒ on 𝑆 that
containsℳ. It follows that 𝛽(𝑆) is a subsemigroup of 𝜆(𝑆). The space 𝜆(𝑆) is well-known in
General and Categorial Topology as the superextension of 𝑆, see [7].

Given a semigroup 𝑆 we shall discuss the algebraic structure of the automorphism group
Aut(𝜆(𝑆)) of the superextension 𝜆(𝑆) of 𝑆. We show that any automorphism of a semigroup 𝑆
can be extended to an automorphism of its superextension 𝜆(𝑆), and the automorphism group
Aut(𝜆(𝑆)) of the superextension 𝜆(𝑆) of a semigroup 𝑆 contains a subgroup, isomorphic to
the group Aut(𝑆). We describe in [1, 2, 4] automorphism groups of superextensions of groups,
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