Closure operators in Morita contexts: mappings and their properties

Alexei I. Kashu

Closure operator of a module category R-Mod is a function C, which associates to every submodule $N \subseteq M$, where $M \in R$ -Mod, a submodule $C_M(N) \subseteq M$, which satisfies the conditions of extension, monotony and continuity ([2, 3]) Denote by $\mathbb{CO}(R)$ the class of all closure operators of R-Mod.

Let $(R, {}_{R}U_{S}, {}_{S}V_{R}, S)$ be an arbitrary Morita context with the morphisms $(,): U \otimes_{S} V \to R$ and $[,]: V \otimes_R U \to S$ ([1]). We consider the functors R-Mod $\xrightarrow{H^U = Hom_R(U, -)}_{H^V = Hom_S(V, -)}$ S-Mod with

the associated natural transformations φ : $\mathbb{1}_{R-\mathrm{Mod}} \to H^{\scriptscriptstyle V} H^{\scriptscriptstyle U}$ and ψ : $\mathbb{1}_{S-\mathrm{Mod}} \to H^{\scriptscriptstyle U} H^{\scriptscriptstyle V}$.

The purpose of this study is to establish the relation between the classes of closure operators $\mathbb{CO}(R)$ and $\mathbb{CO}(S)$ determined by the functors H^U and H^V for the given Morita context $(R, {}_RU_S,$ $_{S}V_{R}, S$). For that two mappings are constructed $\mathbb{CO}(R) \xrightarrow{(-)^{*}} \mathbb{CO}(S)$ between the classes of closure operators. The transition $C \rightsquigarrow C^*$, where $C \in \mathbb{CO}(R)$, is defined by the rule: $(C)^*_{Y}(N) \stackrel{\text{def}}{=} \operatorname{Ker} \left[\psi_Y \cdot H^U(\pi^n_C) \right]$, where $n : N \stackrel{\subseteq}{\longrightarrow} Y$ is an inclusion of S-Mod and $\pi^n_C : H^V(Y) \longrightarrow H^V(Y) / C_{H^V(Y)} \left(\operatorname{Im} H^V(n) \right)$ is a natural epimorphism. Similarly, $D \rightsquigarrow D^*$ is defined for $D \in \mathbb{CO}(S)$.

Some important properties of "star" mappings are proved. In particular:

- 1) the "star" mappings are monotone, i.e. $C_1 \leq C_2 \Rightarrow C_1^* \leq C_2^*$ and $D_1 \leq D_2 \Rightarrow D_1^* \leq D_2^*$; 2) $C \leq C^{**}$ for every $C \in \mathbb{CO}(R), D \leq D^{**}$ for every $D \in \mathbb{CO}(S)$; 3) $\left(\bigwedge_{\alpha \in \mathfrak{A}} C_{\alpha}\right)^* = \bigwedge_{\alpha \in \mathfrak{A}} C_{\alpha}^*$ for every family $\{C_{\alpha} \mid \alpha \in \mathfrak{A}\} \subseteq \mathbb{CO}(R)$; 4) $\left(\bigwedge_{\alpha \in \mathfrak{A}} D_{\alpha}\right)^* = \bigwedge_{\alpha \in \mathfrak{A}} D_{\alpha}^*$ for every family $\{D_{\alpha} \mid \alpha \in \mathfrak{A}\} \subseteq \mathbb{CO}(S)$.

References

- 1. P. M. Cohn, Morita equivalence and duality, Queen Mary College. Mathematical Notes, London, 1966.
- 2. D. Dikranjan and W. Tholen, *Categorical structure of closure operators*, Kluwer Academic Publishers, 1995.
- 3. A. I. Kashu, Closure operators in the categories of modules. Part I, J. Algebra and Discrete Mathematics, **15** (2013), no. 2, 213–228.

CONTACT INFORMATION

Alexei I. Kashu

Institute of Mathematics and Computer Science "Vladimir Andrunachievici", Chisinau, Moldova

Email address: alexei.kashu@math.md