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Cramer’s rules for Sylvester-type quaternion matrix

equations

Ivan Kyrchei

Consider the two-sided generalized Sylvester matrix equation
AXB + CYD = E (1)

over the quaternion skew field H. The Sylvester matrix equation has far reaching applications
in different fields (see, e.g., [1]). Its solving is based on generalized inverses which are important
tools in solving of matrix equations. Let for A ∈ H𝑚×𝑛, A† mean its Moore-Penrose generalized
inverse, i.e. the exclusive matrix X ∈ H𝑛×𝑚 satisfying AXA = A, XAX = X, (AX)* =
AX, (XA)* = XA. Furthermore, let L𝐴 = I−A†A and R𝐴 = I−AA† be a couple of projectors
induced by A. In [2] the solvability conditions to Eq. (1) was obtained and its general solution
was expressed in terms of generalized inverses as follows:

X = A†EB† −A†CM†R𝐴EB
† −A†SC†EL𝐵N

†DB† −A†SVR𝑁DB† + L𝐴U + ZR𝐵,

Y = M†R𝐴ED
† + L𝑀S†SC†EL𝐵N

† + L𝑀(V − S†SVNN†) + WR𝐷,

where U, V, Z and W are arbitrary matrices of suitable sizes over H, M := R𝐴C, N := DL𝐵,
and S := CL𝑀 .

Using determinantal representations of the Moore-Penrose inverse, previously obtained in
[3], within the framework of the theory of quaternion row-column determinants (introduced
in [4, 5]), we got in [6] explicit determinantal representation formulas (analogs of Cramer’s
Rule) for the solution to Eq. (1) and to its special cases when its first term or both terms are
one-sided. The Cramer’s Rules for general, Hermitian, or 𝜂-Hermitian solutions (𝜂 ∈ {i, j,k})
to the Sylvester-type matrix equations involving *-Hermicity or 𝜂-Hermicity (i.e. when in Eq.
(1), B = A* and D = C*, or B = A𝜂* and D = C𝜂*, respectively) are derived in [7].
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(z,k)-equivalence of matrices over Euclidean quadratic

rings and solutions of matrix equation AX+YB=C

Natalija Ladzoryshyn, Vasyl’ Petrychkovych

Let K = Z
[︁√

𝑘
]︁
be a Euclidean quadratic ring, 𝑒(𝑎) be the Euclidean norm 𝑎 ∈ K [1].

Definition 1. Matrices 𝐴,𝐵 ∈𝑀 (𝑛,K) are called (z,k)-equivalent if there exist invertible
matrices 𝑆 ∈ 𝐺𝐿 (𝑛,Z) over the ring of integers Z and 𝑄 ∈ 𝐺𝐿 (𝑛,K) over quadratic ring K
such that 𝐴 = 𝑆𝐵𝑄.

We established the standard form of matrices over a Euclidean quadratic ring with respect
to the (z,k)-equivalence and used it to the description of the structure of solutions of the matrix
equation 𝐴𝑋 + 𝑌 𝐵 = 𝐶.

Theorem 1. Let 𝐷𝐴 = 𝑑𝑖𝑎𝑔
(︀
𝜇𝐴
1 , ..., 𝜇

𝐴
𝑛

)︀
be the Smith normal form of a matrix 𝐴. Then the

matrix 𝐴 is (z,k)-equivalent to the triangular form 𝑇𝐴 with invariant factors 𝜇𝐴
𝑖 , 𝑖 = 1, ..., 𝑛 on

the main diagonal that is
𝑆𝐴𝑄 = 𝑇𝐴 = 𝑇𝐷𝐴, 𝑆 ∈ 𝐺𝐿 (𝑛,Z) , 𝑄 ∈ 𝐺𝐿 (𝑛,K) (1)

where 𝑇 =
⃦⃦
𝑡𝑖𝑗
⃦⃦𝑛

1
is the lower unitriangular matrix namely 𝑡𝑖𝑗 = 0 if 𝑖 < 𝑗, 𝑡𝑖𝑗 = 1 if 𝑖 = 𝑗

and 𝑡𝑖𝑗 = 0 if 𝜇𝐴
𝑖 = 1; 𝑒(𝑡𝑖𝑗) < 𝑒(𝜇𝐴

𝑖 ) for 𝑡𝑖𝑗 ̸= 0, 𝑖, 𝑗 = 1, ..., 𝑛, 𝑖 > 𝑗.
If K is a Euclidean imaginary quadratic ring, then the matrix 𝐴 has a finite number of

triangular form 𝑇𝐴 in the form (1) with respect to (z,k)-equivalence.

Consider the matrix equation
𝐴𝑋 + 𝑌 𝐵 = 𝐶, (2)

where 𝐴,𝐵,𝐶 ∈𝑀 (𝑛,K) are given matrices and 𝑋, 𝑌 ∈𝑀 (𝑛,K) are unknown matrices. Let
pair of matrices (𝐴,𝐵) be the (z,k)-equivalent to the pair

(︀
𝑇𝐴, 𝑇𝐵

)︀
of matrices 𝑇𝐴 and 𝑇𝐵 in

the form (1) that is 𝑆𝐴𝑄𝐴 = 𝑇𝐴, 𝑆𝐵𝑄𝐵 = 𝑇𝐵, 𝑆 ∈ 𝐺𝐿 (𝑛,Z) , 𝑄𝐴, 𝑄𝐵 ∈ 𝐺𝐿 (𝑛,K) [2]. Then
from the equation (2) we get the equation

𝑇𝐴𝐻 +𝑊𝑇𝐵 = 𝐶, (3)

where 𝐻 = 𝑄−1
𝐴 𝑋𝑄𝐵, 𝑊 = 𝑆𝑌 𝑆−1, 𝐶 = 𝑆𝐶𝑄𝐵. The matrix equations (2) and (3) are

equivalent. Thus the description of the solutions of equation (2) are reduced to the description
of the solutions of equation (3).

Theorem 2. If the equation (3) has a solution then it has such solutions 𝐻 =
⃦⃦
ℎ𝑖𝑗

⃦⃦𝑛

1
,

𝑊 =
⃦⃦
𝑤𝑖𝑗

⃦⃦𝑛

1
that ℎ𝑖𝑗 = 0 if 𝜇𝑖 = 1, and 𝑒(ℎ𝑖𝑗) < 𝑒(𝜇𝐵

𝑖 ) if ℎ𝑖𝑗 ̸= 0, 𝑖, 𝑗 = 1, ..., 𝑛.
If K is a Euclidean imaginary quadratic ring, then the equation (3) has a finite number of

such solutions.
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