References

- 1. H. Hasse, Number theory, Classics in Mathematics, Springer-Verlag, New York-Berlin, 1980.
- N. Ladzoryshyn, V. Petrychkovych, Equivalence of pairs of matrices with relatively prime determinants over quadratic rings of principal ideals, Bul. Acad. Stiinte Repub. Mold. Mat. 3 (2014), 38–48.

CONTACT INFORMATION

Natalija Ladzoryshyn

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, Lviv, Ukraine *Email address*: natalja.ladzoryshyn@gmail.com.ua

Vasyl' Petrychkovych

Key words and phrases. Quadratic ring, (z,k)-equivalence of matrices, matrix equation

Separability of the lattice of τ -closed totally ω -composition formations of finite groups

INNA P. LOS, VASILY G. SAFONOV

All groups considered are finite. All notations and terminologies are standard [1]-[5].

Let ω be a non-empty set of primes. Every function of the form $f : \omega \bigcup \{\omega'\} \to \{\text{formations}\}$ is called an ω -composition satellite. For any ω -composition satellite $CF_{\omega}(f) = \{G|G/R_{\omega}(G) \in f(\omega') \text{ and } G/C^p(G) \in f(p) \text{ for all } p \in \pi(Com(G)) \cap \omega\}$. If the formation \mathfrak{F} is such that $\mathfrak{F} = CF_{\omega}(f)$ for some ω -composition satellite f, then it is ω -composition formation, and $f - \omega$ -composition satellite of this formation.

Every formation of groups is called 0-multiply ω -composition. For $n \ge 1$, a formation \mathfrak{F} is called *n*-multiply ω -composition, if it has an ω -composition satellite f such that every value f(p) of f is an (n-1)-multiply ω -composition formation. A formation \mathfrak{F} is called *totally* ω -composition if it is *n*-multiply ω -composition for all natural n.

Let for any group G, $\tau(G)$ be a set of subgroups of G such that $G \in \tau(G)$. Then we say following [5] that τ is a *subgroup functor* if for every epimorphism $\varphi : A \to B$ and any groups $H \in \tau(A)$ and $T \in \tau(B)$ we have $H^{\varphi} \in \tau(B)$ and $T^{\varphi^{-1}} \in \tau(A)$. A class \mathfrak{F} of groups is called τ -closed if $\tau(G) \subseteq \mathfrak{F}$ for all $G \in \mathfrak{F}$.

Let \mathfrak{X} be some set of groups. Then $c_{\omega_{\infty}}^{\tau}$ form \mathfrak{X} denotes the totally ω -composition formation generated by \mathfrak{X} , i.e. $c_{\omega_{\infty}}^{\tau}$ form \mathfrak{X} is the intersection of all τ -closed totally ω -composition formations containing \mathfrak{X} . For any two τ -closed totally ω -composition formations \mathfrak{M} and \mathfrak{H} , we write $\mathfrak{M} \vee_{\omega_{\infty}}^{\tau} \mathfrak{H} = c_{\omega_{\infty}}^{\tau} \operatorname{form}(\mathfrak{M} \cup \mathfrak{H}).$

With respect to the operations $\vee_{\omega_{\infty}}^{\tau}$ and \cap the set $c_{\omega_{\infty}}^{\tau}$ of all τ -closed totally ω -composition formations forms a complete lattice. Formations in $c_{\omega_{\infty}}^{\tau}$ are called $c_{\omega_{\infty}}^{\tau}$ -formations.

Let \mathfrak{X} be a non-empty class of finite groups. A complete lattice θ of formations is called \mathfrak{X} -separable, if for every term $\nu(x_1, ..., x_n)$ of signature $\{\cap, \lor_{\theta}\}$, θ -formations $\mathfrak{F}_1, ..., \mathfrak{F}_n$ and every group $A \in \mathfrak{X} \cap \nu(\mathfrak{F}_1, ..., \mathfrak{F}_n)$ are exists \mathfrak{X} -groups $A_1 \in \mathfrak{F}_1, ..., A_n \in \mathfrak{F}_n$ such that $A \in \nu(\theta \text{form} A_1, ..., \theta \text{form} A_n)$. In particular, if $\mathfrak{X} = \mathfrak{G}$ is the class of all finite groups then the lattice θ of formations is called \mathfrak{G} -separable or separable.

THEOREM 1. The lattice $c_{\omega_{\infty}}^{\tau}$ all τ -closed totally ω -composition formations is \mathfrak{G} -separated.

Let τ be the trivial subgroup functor or let ω be the set of all primes. Then we obtain

COROLLARY 1. The lattice c_{∞}^{ω} all totally ω -composition formations is \mathfrak{G} -separated.

COROLLARY 2. The lattice c_{∞}^{τ} all τ -closed totally composition formations is \mathfrak{G} -separated.

References

- A.N. Skiba, L.A. Shemetkov Multiply *L*-composition formations of finite groups Ukrainsk. math. zh. 52, N 6, (2000), 783–797.
- 2. L.A. Shemetkov, A.N. Skiba Formations of algebraic systems, Nauka, Moscow, 1989.
- 3. A.N. Skiba Algebra of formations, Belarus. Navuka, Minsk, 1997.

CONTACT INFORMATION

Inna P. Los

Belarusian State University, Minsk, Belarus Email address: losip@bsu.by

Vasily G. Safonov Belarusian State University, Minsk, Belarus

Email address: vgsafonov@bsu.by

Key words and phrases. Formation of finite groups, τ -closed formation, totally ω -composition formation, lattice of formations, \mathfrak{G} -separated lattice of formations

Definition of invertibility property for loops via translations

Alla Lutsenko

A quasigroup can be defined as a groupoid $(Q; \cdot)$ in which all left translations $L_a(L_a(x) := a \cdot x)$ and all right translations $R_a(R_a(x) := x \cdot a)$ are bijections of the carrier Q. In a quasigroup, a definition of a middle translation $M_a(M_a(x) = y : \Leftrightarrow xy = a)$ is also possible. Therefore, an element e of a quasigroup is neutral, if left and right translations defined by e are identical transformations of the carrier: $L_e = R_e = \iota$. A quasigroup having a neutral element is called a loop.

The invertibility property also can be defined via translations of a quasigroup. Rememder that a quasigroup has [1, 2]:

- a left inverse property (briefly, a left IP-quasigroup), if there is a transformation λ such that for all $x, y \ \lambda x \cdot xy = y$;
- a right inverse property (briefly, a right IP-quasigroup), if there is a transformation ρ such that for all $x, y \ yx \cdot \rho x = y$;
- a left cross inverse property (briefly, a left CIP-quasigroup), if there is a transformation γ such that for all $x, y \gamma(x) \cdot yx = y$;
- a right cross inverse property (briefly, a right CIP-quasigroup), if there is a transformation δ such that for all $x, y xy \cdot \delta(x) = y$.

The defining equalities can be written as $L_{\lambda x}L_x = \iota$, $R_{\rho x}R_x = \iota$, $L_{\gamma x}R_x = \iota$, $R_{\delta x}L_x = \iota$ respectively [1], i.e.,

$$L_x^{-1} = L_{\lambda x}, \qquad R_x^{-1} = R_{\rho x}, \qquad R_x^{-1} = L_{\gamma x}, \qquad L_x^{-1} = R_{\delta x}.$$

Thus, the common property for all these classes of quasigroups is the following: *each translation* of a quasigroup is also a translation of the quasigroup.