Residual and fixed modules

Vasyl Petechuk, Yulia Petechuk

Let V be an arbitrary R-module over an associative ring R of $1, G L(V)$ is a group of automorphisms of module V.

The $R(\sigma)=(\sigma-1) V$ and $P(\sigma)=\operatorname{ker}(\sigma-1)$ respectively, are called residual and fixed submodules of the module V of the endomorphism σ.

Inclusions system

$$
\left\{\begin{array}{l}
R\left(\sigma_{1}\right) \in P\left(\sigma_{2}\right) ; \tag{1}\\
R\left(\sigma_{2}\right) \in P\left(\sigma_{1}\right)
\end{array}\right.
$$

exists if and only if $\left(\sigma_{1}-1\right)\left(\sigma_{2}-1\right)=\left(\sigma_{2}-1\right)\left(\sigma_{1}-1\right)=0$ otherwise when $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}=\sigma_{1}+\sigma_{2}-1$.
It is clear that the commutativity $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ follows from the system (1). On the contrary, it is not always true. It is easy to see that if $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ and one of the inclusions of the system (1) takes place, then the second inclusion of system (1) also takes place. If $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ and $R\left(\sigma_{1}\right) \bigcap R\left(\sigma_{2}\right)=0$ or $P\left(\sigma_{1}\right)+P\left(\sigma_{2}\right)=V$ then system (1) takes place. Finding other conditions for which of the commutativity σ_{1} and σ_{2} follows system (1) is the main purpose of the work.

Properties of residual and fixed submodules are used to describe homomorphisms of matrix groups over associative rings from $1[1]$. The method of residual and fixed subspaces was introduced by O'Meara. A shorter version of the proof of O'Meara-Sosnovskij theorem, which describes isomorphisms between full groups preserves projective transvections, has proposed by one of the authors in [3].

The basis of the method of residual and fixed subspaces is the two main properties of transvection. In particular, if σ_{1} and σ_{2} are transvections, then $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ if and only if there is a system (1), and in the case where $R\left(\sigma_{1}\right) \subseteq R\left(\sigma_{2}\right)$ and $R\left(\sigma_{2}\right) \subseteq R\left(\sigma_{1}\right)$, then the commutator $\left[\sigma_{1}, \sigma_{2}\right]$ is a transvection with a residual subspace $R\left(\sigma_{1}\right)$ and a fixed subspace $P\left(\sigma_{2}\right)$.

In [2] it is proved that if R is a division ring, V is a finite-dimensional vector space over $R, \operatorname{dim} R\left(\sigma_{1}\right)=\operatorname{dim} R\left(\sigma_{2}\right)=2, R\left(\sigma_{1}\right) \bigcap P\left(\sigma_{1}\right)=0, \sigma_{2}$ is a unipotent element of level 2 or $\operatorname{dim} R\left(\sigma_{1}\right)=2, R\left(\sigma_{1}\right) \bigcap P\left(\sigma_{1}\right) \neq 0, \sigma_{2}$ is a transvection then $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ if and only if there is (1).

Authors are proven
Theorem. Let R be a division ring, V is a finite-dimensional vector space over R, $\operatorname{dim} R\left(\sigma_{1}\right) \bigcap P\left(\sigma_{1}\right) \neq \operatorname{dim} R\left(\sigma_{1}\right)-1, \sigma_{2}$ is a transvection. Equation $\sigma_{1} \sigma_{2}=\sigma_{2} \sigma_{1}$ is executed if and only if system (1) takes place.

The condition of the theorem on σ_{1} means that $R\left(\sigma_{1}\right) \subseteq P\left(\sigma_{1}\right)$ or $R\left(\sigma_{1}\right) \cap P\left(\sigma_{1}\right)$ is a hyperplane in $R\left(\sigma_{1}\right)$.

We emphasize that if $\operatorname{dim} R\left(\sigma_{1}\right)<2$, then the conditions of the theorem are fulfilled automatically. If $\operatorname{dim} R\left(\sigma_{1}\right) \geq 2$, then without the assumption $\operatorname{dim} R\left(\sigma_{1}\right) \bigcap P\left(\sigma_{1}\right) \geq \operatorname{dim} R\left(\sigma_{1}\right)-1$ the theorem does not hold.

This shows an example $\sigma_{1}=\operatorname{diag}(\alpha, \ldots, \alpha, 1, \ldots, 1), \sigma_{2}=t_{1} k(1)$, where α is taken k times, $\alpha \neq 0, \alpha \neq 1, k \geq 2$.

References

1. V.M. Petechuk, Yu.V. Petechuk. Fixed and Residual Modules. Science News of Uzhgorod un-ty. Ser Math and inform 1 (30) (2017), 87-94.
2. A.I. Hahn, O.T. O'Meara The Classical Group and K-Theory. - Berlin: Springer, 1989.
3. V.M. Petechuk. Isomorphisms of groups of rich transvections. Math Notes. 2 (39) (1986), 186 -195.

Contact information
Vasyl Petechuk
Department of Mathematics and Informatics, Institute of Postgraduate Education, City Uzhgorod, Ukraine
Email address: vasil.petechuk@gmail.com

Yulia Petechuk

Department of Mathematics and Informatics, Transcarpathian Hungarian Institute by Ferenc Rakoczy II, City Beregovo, Ukraine
Email address: vasil.petechuk@gmail.com
Key words and phrases. Residual and fixed modules, transvection, commutativ
Method of residual and fixed subspaces was introduced by O'Meara.

Solvable Lie algebras of derivations of rank one

Anatoliy Petravchuk, Kateryna Sysak

Let \mathbb{K} be a field of characteristic zero and $A=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$ the polynomial ring over \mathbb{K}. A \mathbb{K} derivation D of A is a \mathbb{K}-linear mapping $D: A \rightarrow A$ that satisfies the rule: $D(a b)=D(a) b+a D(b)$ for all $a, b \in A$. The set $W_{n}(\mathbb{K})$ of all \mathbb{K}-derivations of the polynomial ring A forms a Lie algebra over \mathbb{K}. This Lie algebra is simultaneously a free module over A with the standard basis $\left\{\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$. Therefore, for each subalgebra L of $W_{n}(\mathbb{K})$ one can define the rank $\operatorname{rank}_{A} L$ of L over the ring A. Note that for any $f \in A$ and $D \in W_{n}(\mathbb{K})$ a derivation $f D$ is defined by the rule: $f D(a)=f \cdot D(a)$ for all $a \in A$.

Finite dimensional subalgebras L of $W_{n}(\mathbb{K})$ such that $\operatorname{rank}_{A} L=1$ were described in [1]. We study solvable subalgebras $L \subseteq W_{n}(\mathbb{K})$ of rank 1 over A without restrictions on the dimension over the field \mathbb{K}.

Recall that a polynomial $f \in A$ is said to be a Darboux polynomial for a derivation $D \in W_{n}(\mathbb{K})$ if $f \neq 0$ and $D(f)=\lambda f$ for some polynomial $\lambda \in A$. The polynomial λ is called the polynomial eigenvalue of f for the derivation D. Some properties of Darboux polynomials and their applications in the theory of differential equations can be found in [3]. Denote by A_{D}^{λ} the set of all Darboux polynomials for $D \in W_{n}(\mathbb{K})$ with the same polynomial eigenvalue λ and of the zero polynomial. Obviously, the set A_{D}^{λ} is a vector space over \mathbb{K}. If V is a subspace of A_{D}^{λ} for any derivation $D \in W_{n}(\mathbb{K})$, then we denote by $V D$ the set of all derivations $f D, f \in V$.

Theorem 1. Let L be a subalgebra of the Lie algebra $W_{n}(\mathbb{K})$ of rank 1 over A and $\operatorname{dim}_{\mathbb{K}} L \geq 2$. The Lie algebra L is abelian if and only if there exist a derivation $D \in W_{n}(\mathbb{K})$ and a Darboux polynomial f for D with the polynomial eigenvalue λ such that $L=V D$ for some \mathbb{K}-subspace $V \subseteq A_{D}^{\lambda}$.

Using this result one can characterize nonabelian subalgebras of rank 1 over A of the Lie algebra $W_{n}(\mathbb{K})$. For the Lie algebra $\widetilde{W}_{n}(\mathbb{K})$ of all \mathbb{K}-derivations of the field $\mathbb{K}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ this problem is simpler and was considered in [2].

References

1. I. V. Arzhantsev, E. A. Makedonskii, A. P. Petravchuk, Finite-dimensional subalgebras in polynomial Lie algebras of rank one, Ukrainian Math. Journal 63 (2011), no. 5, 827-832.
2. Ie. O. Makedonskyi, A. P. Petravchuk, On nilpotent and solvable Lie algebras of derivations, Journal of Algebra 401 (2014), 245-257.
