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On the conjugate sets of IP-quasigroups

Tatiana Rotari

A quasigroup (𝑄,𝐴) is called quasigroup with the property of invertibility (an 𝐼𝑃 -quasigroup)
if there exist two mappings 𝐼𝑙 an 𝐼𝑟 on the set 𝑄 into 𝑄 that 𝐴(𝐼𝑙𝑥, 𝐴(𝑥, 𝑦)) = 𝑦 and
𝐴(𝐴(𝑦, 𝑥), 𝐼𝑟𝑥) = 𝑦 for any 𝑥, 𝑦 ∈ 𝑄 [1]. The mappings 𝐼𝑙 and 𝐼𝑟 are permutations and
𝐼2𝑙 = 𝐼2𝑟 = 𝜀.

It is known that the system Σ of six (not necessarily distinct) conjugates (or parastrophes):
𝐴, 𝑟𝐴, 𝑙𝐴, 𝑟𝑙𝐴,𝑙𝑟𝐴,𝑠𝐴, where 𝑟𝐴(𝑥, 𝑦) = 𝑧 ⇔ 𝐴(𝑥, 𝑧) = 𝑦, 𝑙𝐴(𝑥, 𝑦) = 𝑧 ⇔ 𝐴(𝑧, 𝑦) = 𝑥, 𝑠𝐴(𝑥, 𝑦) =
𝐴(𝑦, 𝑥) (𝑟𝑙𝐴 =𝑟(𝑙𝐴)) corresponds to a quasigroup (𝑄,𝐴).

It is known [2] that the number of distinct conjugates in Σ can be 1, 2, 3 or 6.
Using suitable Belousov’s designation of conjugates of a quasigroup (𝑄,𝐴) from [1] we have

the following system Σ of conjugates:
Σ =

{︀
𝐴, 𝑟𝐴, 𝑙𝐴, 𝑙𝑟𝐴, 𝑟𝑙𝐴, 𝑠𝐴

}︀
,

where 1𝐴 = 𝐴, 𝑟𝐴 = 𝐴−1, 𝑙𝐴 =−1𝐴, 𝑙𝑟𝐴 =−1(𝐴−1), 𝑟𝑙𝐴 = (−1𝐴)−1,𝑠𝐴 = 𝐴*.
Note that (︀−1(𝐴−1)

)︀−1
=𝑟𝑙𝑟𝐴 =−1

(︀
(−1𝐴)−1

)︀
=𝑙𝑟𝑙𝐴 =𝑠𝐴

and 𝑟𝑟𝐴 =𝑙𝑙𝐴 = 𝐴, 𝜎𝜏𝐴 =𝜎(𝜏𝐴).
The conjugates og IP-quasigroup have the following form [1, 4]:

𝑙𝐴(𝑥, 𝑦) = 𝐴(𝑥, 𝐼𝑟𝑦), 𝑟𝐴(𝑥, 𝑦) = 𝐴(𝐼𝑙𝑥, 𝑦), 𝑙𝑟𝐴(𝑥, 𝑦) = 𝐼𝑙𝐴(𝑥, 𝐼𝑙𝑦),

𝑟𝑙𝐴(𝑥, 𝑦) = 𝐼𝑟𝐴(𝐼𝑙𝑥, 𝑦), 𝑠𝐴(𝑥, 𝑦) = 𝐼𝑙𝐴(𝐼𝑟𝑥, 𝐼𝑟𝑦).

The following Theorem 1 of [3, 4] describes all possible conjugate sets for quasigroups and
points out the only possible variants of equality of conjugates:

Theorem 1. The following conjugate sets of a quasigroups (𝑄, 𝐴) are only possible:
Σ1(𝐴) = {𝐴}, Σ2 = {𝐴, 𝑠𝐴} = {𝐴 =𝑙𝑟𝐴 =𝑟𝑙𝐴, 𝑙𝐴 =𝑟𝐴 =𝑠𝐴}, Σ6 = {𝐴, 𝑙𝐴, 𝑟𝐴, 𝑙𝑟𝐴, 𝑟𝑙𝐴, 𝑠𝐴},
Σ3 = {𝐴, 𝑙𝑟𝐴, 𝑟𝑙𝐴} and three cases are only possible: Σ

1

3 = {𝐴 =𝑟𝐴, 𝑙𝐴 =𝑙𝑟𝐴, 𝑟𝑙𝐴 =𝑠𝐴};
Σ

2

3 = {𝐴 =𝑙𝐴, 𝑟𝐴 =𝑟𝑙𝐴, 𝑙𝑟 =𝑠𝐴}; Σ
3

3 = {𝐴 =𝑠𝐴, 𝑟𝐴 =𝑙𝑟𝐴, 𝑙𝐴 =𝑟𝑙𝐴}.

We study the conjugate sets on the distict conjugates of IP-quasigroups and IP-loops.

Theorem 2. Let a quasigroup (𝑄, 𝐴) be an IP-quasigroup. Then
Σ(𝐴) = Σ1(𝐴) if and only if 𝐼𝑟 = 𝐼𝑙 = 𝐼 = 𝜀;
Σ(𝐴) = Σ2(𝐴) if and only if 𝐼𝑙 = 𝐼𝑟 = 𝐼 ̸= 𝜀, 𝐴(𝑥, 𝑦) ̸= 𝐴(𝑦, 𝑥) and 𝐼𝐴(𝑥, 𝑦) = 𝐴(𝑦, 𝑥);

Σ(𝐴) = Σ
1

3(𝐴) if and only if 𝐼𝑙 = 𝜀 ̸= 𝐼𝑟;

Σ(𝐴) = Σ
2

3(𝐴) if and only if 𝐼𝑟 = 𝜀 ̸= 𝐼𝑙;

Σ(𝐴) = Σ
3

3(𝐴) if and only if 𝐼𝑙 = 𝐼𝑟 = 𝐼 ̸= 𝜀 and 𝐴(𝑥, 𝑦) = 𝐴(𝑦, 𝑥);
Σ(𝐴) = Σ6(𝐴) if and only if 𝐼𝑙 = 𝐼𝑟 = 𝐼 ̸= 𝜀, 𝐴(𝑥, 𝑦) ̸= 𝐴(𝑦, 𝑥) and 𝐼𝐴(𝑥, 𝑦) ̸= 𝐴(𝑦, 𝑥).;
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A special case of IP-loops is a Moufang loop defined by the identity
𝐴(𝑥, 𝐴(𝑦, 𝐴(𝑥, 𝑧))) = 𝐴(𝐴(𝐴(𝑥, 𝑦), 𝑥), 𝑧).

From the Theoreme the following corollary easy follow.

Corollary 1. Let (Q, A) be an IP-loop (a Moufang loop), then
Σ(𝐴) = Σ1(𝐴) if and only if 𝐼 = 𝜀;

Σ(𝐴) = Σ
3

3(𝐴) if and only if (𝑄, 𝐴) is commutative and 𝐼 ̸= 𝜀;
Σ(𝐴) = Σ6(𝐴) if and only if (𝑄, 𝐴) is noncommutative.

Note that the case Σ(𝐴) = Σ2(𝐴) (Σ1

3(𝐴) or Σ
2

3(𝐴)) for any IP-loops is impossible.
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On sublattices of the lattice of multiply saturated

formations of finite groups

Inna N. Safonova, Vasily G. Safonov

All groups considered are finite. We use terminology and notations from [1]–[3].
Let 𝜎 be some partition of the set of all primes P, that is, 𝜎 = {𝜎𝑖|𝑖 ∈ 𝐼}, where P =

⋃︀
𝑖∈𝐼 𝜎𝑖

and 𝜎𝑖 ∩ 𝜎𝑗 = ∅ for all 𝑖 ̸= 𝑗; Π ⊆ 𝜎 and Π′ = 𝜎 ∖Π. If 𝑛 is an integer, the symbol 𝜎(𝑛) denotes
the set {𝜎𝑖|𝜎𝑖 ∩ 𝜋(𝑛) ̸= ∅}, if 𝐺 is a finite group, then 𝜎(𝐺) = 𝜎(|𝐺|), and if F is a class of
groups, then 𝜎(F) =

⋃︀
𝐺∈F 𝜎(𝐺).

A function 𝑓 of the form 𝑓 : 𝜎 → {formations of groups} is called a formation 𝜎-function.
For any formation 𝜎-function 𝑓 the symbol 𝐿𝐹𝜎(𝑓) denotes the class

𝐿𝐹𝜎(𝑓) = (𝐺 | 𝐺 = 1 or 𝐺 ̸= 1 and 𝐺/𝑂𝜎′
𝑖,𝜎𝑖

(𝐺) ∈ 𝑓(𝜎𝑖) for all 𝜎𝑖 ∈ 𝜎(𝐺)).

If for some formation 𝜎-function 𝑓 we have F = 𝐿𝐹𝜎(𝑓), then we say, that the class F is
𝜎-local and 𝑓 is a 𝜎-local definition of F.

We suppose that every formation of groups is 0-multiply 𝜎-local ; for 𝑛 ≥ 1, we say that the
formation F is 𝑛-multiply 𝜎-local provided either F = (1) is the formation of all identity groups
or F = 𝐿𝐹𝜎(𝑓), where 𝑓(𝜎𝑖) is (𝑛− 1)-multiply 𝜎-local for all 𝜎𝑖 ∈ 𝜎(F). The formation F is
said to be totally 𝜎-local provided F it is 𝑛-multiply 𝜎-local for all 𝑛 ∈ N.

In the classical case, when 𝜎 = 𝜎1 = {{2}, {3}, . . .} , a formation 𝜎-function, a 𝜎-local
formation and an 𝑛-multiply 𝜎-local formation are, respectively, a formation function, a local
formation (a saturated formation), and an 𝑛-multiply local formation (an 𝑛-multiply saturated
formation) in the usual sense [4]–[6].


	Rotari T. On the conjugate sets of IP-quasigroups
	Safonova I.N., Safonov V.G. On sublattices of the lattice of multiply saturated formations of finite groups

