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A special case of IP-loops is a Moufang loop defined by the identity
𝐴(𝑥, 𝐴(𝑦, 𝐴(𝑥, 𝑧))) = 𝐴(𝐴(𝐴(𝑥, 𝑦), 𝑥), 𝑧).

From the Theoreme the following corollary easy follow.

Corollary 1. Let (Q, A) be an IP-loop (a Moufang loop), then
Σ(𝐴) = Σ1(𝐴) if and only if 𝐼 = 𝜀;

Σ(𝐴) = Σ
3

3(𝐴) if and only if (𝑄, 𝐴) is commutative and 𝐼 ̸= 𝜀;
Σ(𝐴) = Σ6(𝐴) if and only if (𝑄, 𝐴) is noncommutative.

Note that the case Σ(𝐴) = Σ2(𝐴) (Σ1

3(𝐴) or Σ
2

3(𝐴)) for any IP-loops is impossible.
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On sublattices of the lattice of multiply saturated

formations of finite groups

Inna N. Safonova, Vasily G. Safonov

All groups considered are finite. We use terminology and notations from [1]–[3].
Let 𝜎 be some partition of the set of all primes P, that is, 𝜎 = {𝜎𝑖|𝑖 ∈ 𝐼}, where P =

⋃︀
𝑖∈𝐼 𝜎𝑖

and 𝜎𝑖 ∩ 𝜎𝑗 = ∅ for all 𝑖 ̸= 𝑗; Π ⊆ 𝜎 and Π′ = 𝜎 ∖Π. If 𝑛 is an integer, the symbol 𝜎(𝑛) denotes
the set {𝜎𝑖|𝜎𝑖 ∩ 𝜋(𝑛) ̸= ∅}, if 𝐺 is a finite group, then 𝜎(𝐺) = 𝜎(|𝐺|), and if F is a class of
groups, then 𝜎(F) =

⋃︀
𝐺∈F 𝜎(𝐺).

A function 𝑓 of the form 𝑓 : 𝜎 → {formations of groups} is called a formation 𝜎-function.
For any formation 𝜎-function 𝑓 the symbol 𝐿𝐹𝜎(𝑓) denotes the class

𝐿𝐹𝜎(𝑓) = (𝐺 | 𝐺 = 1 or 𝐺 ̸= 1 and 𝐺/𝑂𝜎′
𝑖,𝜎𝑖

(𝐺) ∈ 𝑓(𝜎𝑖) for all 𝜎𝑖 ∈ 𝜎(𝐺)).

If for some formation 𝜎-function 𝑓 we have F = 𝐿𝐹𝜎(𝑓), then we say, that the class F is
𝜎-local and 𝑓 is a 𝜎-local definition of F.

We suppose that every formation of groups is 0-multiply 𝜎-local ; for 𝑛 ≥ 1, we say that the
formation F is 𝑛-multiply 𝜎-local provided either F = (1) is the formation of all identity groups
or F = 𝐿𝐹𝜎(𝑓), where 𝑓(𝜎𝑖) is (𝑛− 1)-multiply 𝜎-local for all 𝜎𝑖 ∈ 𝜎(F). The formation F is
said to be totally 𝜎-local provided F it is 𝑛-multiply 𝜎-local for all 𝑛 ∈ N.

In the classical case, when 𝜎 = 𝜎1 = {{2}, {3}, . . .} , a formation 𝜎-function, a 𝜎-local
formation and an 𝑛-multiply 𝜎-local formation are, respectively, a formation function, a local
formation (a saturated formation), and an 𝑛-multiply local formation (an 𝑛-multiply saturated
formation) in the usual sense [4]–[6].
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As shown in [3] the set 𝒮𝜎
𝑛 of all 𝑛-multiply 𝜎-local formations forms a complete algebraic

modullar lattice.

Theorem 1. The lattice 𝒮𝜎
𝑛 of all 𝑛-multiply 𝜎-local formations is a complete sublattice of

the lattice of all 𝑛-multiply saturated formations.

In the case when 𝑛 = 1, we get from Theorem 1 the following resalt.

Corollary 1. The lattice 𝒮𝜎 of all 𝜎-local formations is a complete sublattice of the lattice
of all saturated formations.
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Elementary reduction of idempotent matrices over

semiabelian rings

Andrii Sahan

A ring 𝑅 is a associative ring with nonzero identity. An elementary 𝑛×𝑛 matrix with entries
from 𝑅 is a square 𝑛× 𝑛 matrix of one of the types below:
1) diagonal matrix with invertible diagonal entries;
2) identity matrix with one additional non diagonal nonzero entry;
3) permutation matrix, i.e. result of switching some columns or rows in the identity matrix.

A ring 𝑅 is called a ring with elementary reduction of matrices in case of an arbitrary matrix
over 𝑅 possesses elementary reduction, i.e.for an arbitrary matrix 𝐴 over the ring 𝑅 there exist
such elementary matrices over 𝑅, 𝑃1, . . . , 𝑃𝑘, 𝑄1, . . . , 𝑄𝑠 of respectful size that

𝑃1 · · ·𝑃𝑘 · 𝐴 ·𝑄1 · · ·𝑄𝑠 = 𝑑𝑖𝑎𝑔(𝜀1, . . . , 𝜀𝑟, 0, . . . , 0),

where 𝑅𝜀𝑖+1𝑅 ⊆ 𝑅𝜀𝑖 ∩ 𝜀𝑖𝑅 for any 𝑖 = 1, . . . , 𝑟 − 1.
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