References

1. I. Kaplansky Elementary divisor and modules, Trans. Amer. Math. Soc. - 1949. - 66. - P. 464-491.

CONTACT INFORMATION

Volodymyr Shchedryk

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, L'viv, Ukraine *Email address*: shchedrykv@ukr.net

Key words and phrases. Commutative elementary divisor domain, matrix linear equation, greatest common left divisor, least common left multiple

Partition of Gaussian integers into a product of power-free numbers

VALERIIA SHRAMKO

We solve the problem of distribution of values of the function of the number of representations of Gaussian integers from a narrow sector in a product of power-free numbers.

Let G be a set of Gaussian integers. Let x be a growing to ∞ parameter. Let $S_{\varphi}(x)$ denote a sector of complex S-plane

$$S_{\varphi}(x) := \{ \alpha \in G \mid \varphi_1 \le \arg \alpha \le \varphi_2, N(\alpha) \le x \},$$
(1)

where $N(\alpha) = |\alpha|^2$.

Let $S_{\varphi}(x)$ be a narrow sector, if $\varphi_2 - \varphi_1 = o(x^{-\varepsilon})$ for $x \to \infty$, $\varepsilon > 0$ is a small positive integer.

A Gaussian integer α is power-free, if there is <u>no</u> Gaussian integer β such that $\alpha = \beta^k$, $k \in \{2, 3, ...\}$. Let us notice that all square-free numbers are power-free.

We have proved the following statements:

THEOREM 1. Let $g_2(\alpha)$ be the number of representations of a Gaussian integer α in the product of power-free numbers, where the positions of the factors are not count. For $x \to \infty$ the following asymptotic formula is true

$$\sum_{N(\alpha) \le x} g_2(\alpha) = x \sum_{n=0}^{\infty} d_n \frac{I_{n+1}(2\sqrt{\log x})}{(\log x)^{\frac{n+1}{2}}} + O(x),$$
(2)

where $I_n(x)$ is the modified Bessel's function of the first kind, coefficients d_n , $n \ge 1$, can be defined through coefficients from the decomposition of function F(s) in a Taylor's series. The function F(s) can be defined through an expression for the generating function of $g_2(\alpha)$

$$F_2(s) = \sum_{0 \neq \alpha' \in G} \frac{g_2(\alpha)}{N^s(\alpha)} = exp\left(\frac{\pi}{s-1} + F(s)\right).$$
(3)

THEOREM 2. Let $g_2^*(\alpha)$ be the number of representations of a Gaussian integer α in the product $\alpha = \delta_1 \delta_2 \dots \delta_k$, where δ_i , $i = \overline{1;k}$, are power-free numbers, $N(\beta_1) \leq N(\beta_2) \leq \dots \leq N(\beta_k)$

 $N(\beta_k)$. Then

$$\sum_{N(\alpha) \le x} g_2^*(\alpha) \sim e^{c_0 \sqrt{\log x}} \sum_{(h,v)} H(h,v) (\log x)^{-\frac{2h+v}{4}} \left(1 + a_0 (\log x)^{-\frac{1}{2}} - \frac{2h+v}{4} (\log x)^{-1} \right), \quad (4)$$

where c_0 , a_0 are positive countable constants, the sum $\sum_{(h,v)}$ means that we summarize by all the

pairs (h, v) such that $1 \le h \le N$, v = 1, 2, ... and $h + \frac{1}{2}v \le N + \frac{5}{2}$.

These results are a generalization of the results of K. Broughan [1] and I. Katai – M. V. Subbarao [2].

References

1. K. Broughan, Quadrafree factorization numerorum, Rocky Mountain J. Math. (2014), no. 40(3), 791-807.

 I. Katai and M. V. Subbarao On product partitions and asymptotic formulas, Proc. Of the Intern. Conference on analytic number theory, Bangalore, India. December 13-15, 2003. Mysore: Ramanujan Math. Soc., Ramanujan Math. Soc. Lecture Notice. (2006), no. 2, 99–114.

CONTACT INFORMATION

Valeriia Shramko

Chair of Computational Algebra and Discrete Mathematics, Odessa I. I. Mechnikov National University, Odessa, Ukraine

Email address: maths_onu@ukr.net

Key words and phrases. Gaussian integer, power-free number, square-free number

The commutators of Sylow 2-subgroups of alternating group and wreath product. Their minimal generating sets

RUSLAN SKURATOVSKII

We consider the commutator of Sylow 2-subgroups of an alternating group and research its minimal generating sets. The commutator width of a group G, denoted by cw(G) [1], is the maximum of commutator lengths of elements of its derived subgroup [G, G]. The commutator width of Sylow 2-subgroups of the alternating group A_{2^k} , symmetric group S_{2^k} and $C_p \wr B$ are equal to 1. The paper presents a structure of a commutator subgroup of Sylow 2-subgroups of alternating groups. We prove that the commutator width [1] of an arbitrary element of a permutational wreath product of cyclic groups C_{p_i} , $p_i \in \mathbb{N}$, is 1. As it has been proven in [2] there are subgroups G_k and B_k in the automorphisms group $AutX^{[k]}$ of the restricted binary rooted tree such that $G_k \simeq Syl_2A_{2^k}$ and $B_k \simeq Syl_2S_{2^k}$, respectively.

THEOREM 1. An element $(g_1, g_2)\sigma \in G'_k$, where $\sigma \in S_2$ iff $g_1, g_2 \in G_{k-1}$ and $g_1g_2 \in B'_{k-1}$.

LEMMA 1. For any group B and integer $p \ge 2$ the following inequality is true:

 $cw(B \wr C_p) \le \max(1, cw(B)).$

COROLLARY 1. For prime p > 2 and k > 1 the commutator widths of $Syl_p(A_{p^k})$ and of $Syl_p(S_{p^k})$ are equal to 1.

Further, we analyze the structure of the elements of $Syl_2S'_{2^k}$ and obtain the following result.

THEOREM 2. Elements of $Syl_2S'_{2^k}$ have the following form $\{[f,l] \mid f \in B_k, l \in G_k\} = \{[l,f] \mid f \in B_k, l \in G_k\}.$