References

1. I. Kaplansky Elementary divisor and modules, Trans. Amer. Math. Soc. - 1949. - 66. - P. 464-491.

Contact information

Volodymyr Shchedryk

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, L'viv, Ukraine
Email address: shchedrykv@ukr.net
Key words and phrases. Commutative elementary divisor domain, matrix linear equation, greatest common left divisor, least common left multiple

Partition of Gaussian integers into a product of power-free numbers

Valeriia Shramko

We solve the problem of distribution of values of the function of the number of representations of Gaussian integers from a narrow sector in a product of power-free numbers.

Let G be a set of Gaussian integers. Let x be a growing to ∞ parameter. Let $S_{\varphi}(x)$ denote a sector of complex S-plane

$$
\begin{equation*}
S_{\varphi}(x):=\left\{\alpha \in G \mid \varphi_{1} \leq \arg \alpha \leq \varphi_{2}, N(\alpha) \leq x\right\}, \tag{1}
\end{equation*}
$$

where $N(\alpha)=|\alpha|^{2}$.
Let $S_{\varphi}(x)$ be a narrow sector, if $\varphi_{2}-\varphi_{1}=o\left(x^{-\varepsilon}\right)$ for $x \rightarrow \infty, \varepsilon>0$ is a small positive integer.

A Gaussian integer α is power-free, if there is no Gaussian integer β such that $\alpha=\beta^{k}$, $k \in\{2,3, \ldots\}$. Let us notice that all square-free numbers are power-free.

We have proved the following statements:

Theorem 1. Let $g_{2}(\alpha)$ be the number of representations of a Gaussian integer α in the product of power-free numbers, where the positions of the factors are not count. For $x \rightarrow \infty$ the following asymptotic formula is true

$$
\begin{equation*}
\sum_{N(\alpha) \leq x} g_{2}(\alpha)=x \sum_{n=0}^{\infty} d_{n} \frac{I_{n+1}(2 \sqrt{\log x)}}{(\log x)^{\frac{n+1}{2}}}+O(x), \tag{2}
\end{equation*}
$$

where $I_{n}(x)$ is the modified Bessel's function of the first kind, coefficients $d_{n}, n \geq 1$, can be defined through coefficients from the decomposition of function $F(s)$ in a Taylor's series. The function $F(s)$ can be defined through an expression for the generating function of $g_{2}(\alpha)$

$$
\begin{equation*}
F_{2}(s)=\sum_{0 \neq \alpha^{\prime} \in G} \frac{g_{2}(\alpha)}{N^{s}(\alpha)}=\exp \left(\frac{\pi}{s-1}+F(s)\right) . \tag{3}
\end{equation*}
$$

Theorem 2. Let $g_{2}^{*}(\alpha)$ be the number of representations of a Gaussian integer α in the product $\alpha=\delta_{1} \delta_{2} \ldots \delta_{k}$, where $\delta_{i}, i=\overline{1 ; k}$, are power-free numbers, $N\left(\beta_{1}\right) \leq N\left(\beta_{2}\right) \leq \ldots \leq$
$N\left(\beta_{k}\right)$. Then

$$
\begin{equation*}
\sum_{N(\alpha) \leq x} g_{2}^{*}(\alpha) \sim e^{c_{0} \sqrt{\log x}} \sum_{(h, v)} H(h, v)(\log x)^{-\frac{2 h+v}{4}}\left(1+a_{0}(\log x)^{-\frac{1}{2}}-\frac{2 h+v}{4}(\log x)^{-1}\right) \tag{4}
\end{equation*}
$$

where c_{0}, a_{0} are positive countable constants, the sum $\sum_{(h, v)}$ means that we summarize by all the pairs (h, v) such that $1 \leq h \leq N, v=1,2, \ldots$ and $h+\frac{1}{2} v \leq N+\frac{5}{2}$.

These results are a generalization of the results of K. Broughan [1] and I. Katai - M. V. Subbarao [2].

References

1. K. Broughan, Quadrafree factorization numerorum, Rocky Mountain J. Math. (2014), no. 40(3), 791-807.
2. I. Katai and M. V. Subbarao On product partitions and asymptotic formulas, Proc. Of the Intern. Conference on analytic number theory, Bangalore, India. December 13-15, 2003. Mysore: Ramanujan Math. Soc., Ramanujan Math. Soc. Lecture Notice. (2006), no. 2, 99-114.

Contact information

Valeriia Shramko

Chair of Computational Algebra and Discrete Mathematics, Odessa I. I. Mechnikov National University, Odessa, Ukraine
Email address: maths_onu@ukr.net
Key words and phrases. Gaussian integer, power-free number, square-free number

The commutators of Sylow 2-subgroups of alternating group and wreath product. Their minimal generating sets

Ruslan SkuratovskiI

We consider the commutator of Sylow 2-subgroups of an alternating group and research its minimal generating sets. The commutator width of a group G, denoted by $c w(G)[1]$, is the maximum of commutator lengths of elements of its derived subgroup $[G, G]$. The commutator width of Sylow 2-subgroups of the alternating group $A_{2^{k}}$, symmetric group $S_{2^{k}}$ and C_{p} 乙 B are equal to 1. The paper presents a structure of a commutator subgroup of Sylow 2-subgroups of alternating groups. We prove that the commutator width [1] of an arbitrary element of a permutational wreath product of cyclic groups $C_{p_{i}}, p_{i} \in \mathbb{N}$, is 1 . As it has been proven in [2] there are subgroups G_{k} and B_{k} in the automorphisms group $A u t X^{[k]}$ of the restricted binary rooted tree such that $G_{k} \simeq S y l_{2} A_{2^{k}}$ and $B_{k} \simeq S y l_{2} S_{2^{k}}$, respectively.

Theorem 1. An element $\left(g_{1}, g_{2}\right) \sigma \in G_{k}^{\prime}$, where $\sigma \in S_{2}$ iff $g_{1}, g_{2} \in G_{k-1}$ and $g_{1} g_{2} \in B_{k-1}^{\prime}$.
Lemma 1. For any group B and integer $p \geq 2$ the following inequality is true:

$$
c w\left(B \imath C_{p}\right) \leq \max (1, c w(B)) .
$$

Corollary 1. For prime $p>2$ and $k>1$ the commutator widths of $\operatorname{Syl}_{p}\left(A_{p^{k}}\right)$ and of Syl $l_{p}\left(S_{p^{k}}\right)$ are equal to 1 .

Further, we analyze the structure of the elements of $S y l_{2} S_{2^{k}}^{\prime}$ and obtain the following result.
Theorem 2. Elements of Syl $_{2} S_{2_{k}}^{\prime}$ have the following form
$\left\{[f, l] \mid f \in B_{k}, l \in G_{k}\right\}=\left\{[l, f] \mid f \in B_{k}, l \in G_{k}\right\}$.

