loops are isomorphic. Also, it is known that the multiplication groups of *IP*-loops are normal subgroups of index two of the total multiplication groups.

We consider general properties of the total multiplication groups of loops and the behavior of the multiplication group in the total multiplication group. Some classes of loops, for which the multiplication group (the inner mapping group) is a normal subgroup of the total multiplication group (resp. of its total inner mapping group) are found. Characterizations of the quotient groups TMlt(Q)/Mlt(Q) and TInn(Q)/Inn(Q) are given, where Q is a middle Bol loop.

References

- 1. V. Belousov, On associated groups of quasigroups, Matem. issled. (1969), 21-39.
- 2. D. Stanovsky, P. Vojtechovsky, Commutator theory for loops, Journal of Algebra 399 (2014), 290-322.
- P. Syrbu, On a generalization of the inner mapping group, Proceed. of the 4th Conf. of Math. Society of the Rep. of Moldova (2017), 161–164.
- V. Shcherbacov, *Elements of Quasigroup Theory and Applications*, Francis Group, CRC Press, Boca Raton, London, New York, 2017.

CONTACT INFORMATION

Parascovia Syrbu

Department of Mathematics, University of Moldova, Chisinau, Republic of Moldova Email address: syrbuviv@yahoo.com

Key words and phrases. Quasigroup, loop, multiplication group, total multiplication group, middle Bol loop

General solutions of generalized ternary quadratic quasigroup functional equations of length three

Alla Tarasevych

Let Q be a set. A mapping $f: Q^3 \to Q$ is called a *ternary invertible operation* if there exist operations ${}^{(14)}f$, ${}^{(24)}f$, ${}^{(34)}f$ such that for any $x, y, z \in Q$ the following identities

$f(^{(14)}f(x,y,z),y,z) = x,$	${}^{(14)}f(f(x,y,z),y,z) = x,$
$f(x, {}^{(24)}f(x, y, z), z) = y,$	${}^{(24)}f(x, f(x, y, z), z) = y,$
$f(x, y, {}^{(34)}f(x, y, z)) = z,$	$^{(34)}f(x,y,f(x,y,z)) = z$

hold [2]. The algebra $(Q; f, {}^{(14)}f, {}^{(24)}f, {}^{(34)}f)$ is a *ternary quasigroup* if it satisfies the above identities. An operation f is called a *left-universally neutral* if f(x, y, y) = x.

A universally quantified equality $T_1 = T_2$ is a ternary functional equation if the terms T_1 , T_2 consist of individual and ternary functional variables, in addition the functional variables are free [1, 2]. The ternary functional equation is generalized if all functional variables are pairwise different; quadratic if each individual variable has exactly two appearances. The number of all functional variables including their repetitions is length of the equation. Let (F_1, F_2, F_3) be the lexicographic sequence of all different functional variables of the equation $T_1 = T_2$, then a triplet (f_1, f_2, f_3) of functions defined on the set Q is called a solution on Q, if the proposition obtained from $T_1 = T_2$ by replacing F_1 with f_1 , F_2 with f_2 , F_3 with f_3 is true [2].

A full classification of generalized ternary quadratic functional equations of length three up to parastrophically primary equivalence is given in [3]. There are exactly four pairwise non-equivalent equations. The set of all quasigroup solutions of one of them is described in [4], and such sets of the remaining three equations are found in the following theorems. THEOREM 1. A triplet (f_1, f_2, f_3) of ternary invertible operations is a solution of the equation $F_1(z, x, F_2(x, y, y)) = F_3(z, u, u)$ if and only if there exist left-universally neutral invertible operations h_1 , h_2 , h_3 and bijections α , β such that

$$f_1(x, y, z) = h_1(\alpha x, y, \beta^{-1}z), \qquad f_2(x, y, z) = h_2(\beta x, y, z), \qquad f_3(x, y, z) = h_3(\alpha x, y, z).$$

THEOREM 2. A triplet (f_1, f_2, f_3) of ternary invertible operations is a solution of the equation $F_1(F_2(x, y, y), z, z) = F_3(x, u, u)$ if and only if there exist left-universally neutral invertible operations g_1, g_2, g_3 and bijections γ, δ such that

$$f_1(x, y, z) = g_1(\gamma x, y, z),$$
 $f_2(x, y, z) = g_2(\delta x, y, z),$ $f_3(x, y, z) = g_3(\gamma \delta x, y, z).$

THEOREM 3. A triplet (f_1, f_2, f_3) of ternary operations defined on a set Q is a quasigroup solution of the functional equation $F_1(F_2(x, y, z), u, u) = F_3(x, y, z)$ if and only if the operation f_2 is invertible, there exist a bijection μ and a left-universally neutral operation g such that

 $f_3(x, y, z) = \mu f_2(x, y, z), \qquad f_1(x, y, z) = g(\mu x, y, z).$

References

- 1. J. Aczél, Lectures on Functional Equations and their applications, Acad. press, New York, 1966.
- F. Sokhatsky, Parastrophic symmetry in quasigroup theory, Bulletin of Donetsk National University. Series A: Natural Sciences. (2016), no. 1/2, 70–83.
- 3. F. Sokhatsky and A. Tarasevych, *Classification of generalized ternary quadratic quasigroup functional equations of length three*, (here).
- 4. F. Sokhatsky, On general solutions of generalized ternary quadratic invertible functional equations of length three, (here).

CONTACT INFORMATION

Alla Tarasevych

Department of Higher Mathematics and Computer Science, Khmelnytskyi National University, Khmelnytskyi, Ukraine

Email address: allatarasevych@gmail.com

Key words and phrases. Ternary quasigroup, quadratic equation, length of a functional equation, parastrophically primary equivalence

Classification of generalized ternary quadratic quasigroup functional equations of length three

Alla Tarasevych, Fedir Sokhatsky

Let Q be an arbitrary fixed set called a *carrier*. A mapping $f: Q^3 \to Q$ is called a *ternary invertible function*, if there exist functions ${}^{(14)}f, {}^{(24)}f, {}^{(34)}f$ such that for any $x, y, z \in Q$ the following identities:

$$f(^{(14)}f(x, y, z), y, z) = x, \qquad (^{(14)}f(x, y, z), y, z) = x,$$

$$f(x, ^{(24)}f(x, y, z), z) = y, \qquad (^{(24)}f(x, f(x, y, z), z) = y, \qquad (1)$$

$$f(x, y, ^{(34)}f(x, y, z)) = z, \qquad (^{(34)}f(x, y, f(x, y, z)) = z$$

hold. If an operation f is invertible, then the algebra $(Q; f, {}^{(14)}f, {}^{(24)}f, {}^{(34)}f)$ is called a *ternary* quasigroup [3].