Aleksandr Tsarev

Department of Mathematics, Jeju National University, Jeju-si, South Korea
Department of Mathematics \& IT, P.M. Masherov Vitebsk State University, Vitebsk, Belarus Email address: alex_vitebsk@mail.ru

Key words and phrases. Finite ring, formation, lattice of formations, algebraic lattice, modular lattice

This work has been partially supported by the grant F19RM-071 from the Belarusian Republican Foundation for Fundamental Research.

On induced modules over group rings of groups of finite rank

Anatolii V. Tushev

Let G be a group and k be a field. A $k G$-module M is said to be imprimitive if there are a subgroup $H<G$ and a $k H$-submodule $N \leq M$ such that $M=N \otimes_{k H} K G$. If the module M is not imprimitive then it is said to be primitive. A representation of the group G is said to be primitive if the module of the representation is primitive.

Let G be a group of finite rank $r(G)$ and k be a field. A $k G$-module M is said to be semiimprimitive if there are subgroup $H<G$ and a $k H$-submodule $N \leq M$ such that $r(H)<r(G)$ and $M=N \otimes_{k H} K G$. If the module M is not semi-imprimitive then it is said to be semi-primitive. A representation of the group G is said to be semi-primitive if the module of the representation is semi-primitive. An element $g \in G($ a subgroup $H \leq G)$ is said to be orbital if $\left|G: C_{G}(g)\right|<\infty$ $\left(\left|G: N_{G}(H)\right|<\infty\right)$. The set $\Delta(\mathrm{G})$ of all orbital elements of G is a characteristic subgroup of G which is said to be the $F C$-center of G.

In [1] Harper shoved that any finitely generated not abelian-by-finite nilpotent group has an irreducible primitive representation over any not locally finite field. In [3] we proved that in the class of soluble groups of finite rank with the maximal condition for normal subgroups only polycyclic groups may have irreducible primitive faithful representations over a field of characteristic zero. In [2] Harper proved that if a polycyclic group G has a faithful irreducible semi-primitive representation then $A \bigcap \Delta(\mathrm{G}) \neq 1$ for any orbital subgroup A of G. It is well known that any polycyclic group is liner and has finite rank.

Theorem 1. Let G be a linear group of finite rank. Suppose that G has a normal subgroup $1 \neq A$, such that $A \bigcap \Delta(G)=1$. Let k be a field of characteristic zero and let M be an irreducible $k G$-module such that $C_{G}(M)=1$. Then there are a subgroup $S \leq G$ and a $k S$-submodule $U \leq M$ such that $r(S)<(G)$ and $M=U \otimes_{k S} k G$.

Corollary 1. Let G be a linear group of finite rank. If the group G has a faithful irreducible semi-primitive representation over a field of characteristic zero then $A \bigcap \Delta(G) \neq 1$ for any orbital subgroup A of G.

References

1. D.L. Harper, Primitive irreducible representations of nilpotent groups, Math. Proc. Camb. Phil. Soc. 82 (1977), 241-247.
2. D.L. Harper, Primitivity in representations of polycyclic groups, Math. Proc. Camb. Phil. Soc. 88 (1980), 15-31.
3. A.V. Tushev, On the primitive representations of soluble groups of finite rank, Sbornik: Mathematics 191 (2000), 117-159.

Anatolii V. Tushev

Department of Excellent Mathematics, Dnipro National University, Dnipro, Ukraine
Email address: tuanvl08@gamail.com
Key words and phrases. Group rings, representations, linear groups

On irreducibility of monomial matrices of order 7 over local rings

Alexander Tylyshchak

The problem of classifying, up to similarity, all the matrices over a commutative ring (which is not a field) is usually very difficult; in most cases it is "unsolvable" (wild, as in the case of the rings of residue classes considered by Bondarenko [1]). In such situation, an important place is occupied by irreducible and indecomposable matrices over rings.

Let R be a commutative local ring with identity with Jacobson radical $\operatorname{Rad} R=t R, t \neq 0$, n, k be a natural, $0<k<n$,
be an $n \times n$-matrix. This matrices first arose in studying indecomposable representations of finite p-groups over commutative local rings [2].

The question when matrix $M(t, k, n)$ is reducible had been solved, in particular, in following cases.

$M(t, k, n)$	Case	Sourse	
irreducible	$k=1, n-1, \quad t \neq 0$	$[\mathbf{2}]$	
reducible	$(k, n)>1$	$[\mathbf{3}]$	
irreducible	$n<7,(k, n)=1$,	$t \neq 0$	$[\mathbf{4}]$
reducible	$n=7, k=3,4$,	$t^{2}=0$	$[\mathbf{4}, 5]$

Theorem 1. Let $n=7,0<k<n, t^{2} \neq 0$. The matrix $M(t, k, n)$ is irreducible over R.
These studies were carried out together with V. M. Bondarenko.

References

1. V. M. Bondarenko, O podobii matrits nad kol'tsom klassov vychetov [On the similarity of matrices over rings of residue classes], Mathematics collection, Izdat. "Naukova Dumka", Kiev, (1976), 275-277 (in Russian).
2. P. M. Gudivok and O. A. Tylyshchak, Pro nezvidni modulyarni zobrazhennya skinchennykh p-hrup nad komutatyvnymy lokal'nymy kil'tsyamy [On the irreducible modular representations of finite p-groups over commutative local rings], Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 3 (1998), 78-83 (in Ukrainian).
3. V. M. Bondarenko, J. Gildea, A. A. Tylyshchak and N. V. Yurchenko, On hereditary reducibility of 2-monomial matrices over commutative rings, Algebra Discrete Math. 27 (2019), no. 1, 1-11.
4. V. M. Bondarenko, M. Yu. Bortos, R. F. Dinis and A. A. Tylyshchak, Reducibility and irreducibility of monomial matrices over commutative rings, Algebra Discrete Math. 16 (2013), no. 2, 171-187.
5. R. F. Dinis, Zvidnist' matryts' $M(t, n-4, n)$ nad lokal'nymy kil'tsyamy holovnykh idealiv dovzhyny 2 [Reducibility of monomial matrices $M(t, n-4, n)$ over local principle ideal rings of length 2], Nauk. Visn. Uzhgorod. Univ., Ser. Mat. and Inform. 24 (2013), no. 1, 29-33 (in Ukrainian).
