CONTACT INFORMATION

Alexander Vasilyev

Department of Algebra and Geometry, F. Scorina Gomel State University, Gomel, Belarus *Email address*: formation56@mail.ru

Tatsiana Vasilyeva

Department of Algebra and Geometry, F. Scorina Gomel State University, Department of Hight Mathematics, Belarusian State University of Transport, Gomel, Belarus *Email address*: tivasilyeva@mail.ru

Anastasiya Melchanka

Department of Algebra and Geometry, F. Scorina Gomel State University, Gomel, Belarus *Email address*: melchenkonastya@mail.ru

Key words and phrases. Finite group, normalizer of Sylow subgroup, hereditary saturated formation, \mathfrak{F} -subnormal subgroup

Cotransitive subsemigroups of the full transformation semigroup T_n

Tetiana Voloshyna

The concept of a cotransitive subsemigroup for transformations semigroups was introduced by R.P. Sullivan in the work [1]. It is used to describe the ideals. We restrict ourselves to the consideration of a full transformation semigroup T_n of finite set X. For $\alpha \in T_n$ by $\pi_\alpha = \alpha \circ \alpha^{-1}$ we denote the partition of the set X into equivalence classes. Let $ran \alpha = \{x_1, x_2, \ldots, x_k\} \subseteq$ $\subseteq X, A_i = \alpha^{-1}(x_i)$. Subsemigroup $S \subseteq T_n$ is called *cotransitive*, if for every $\alpha = \begin{pmatrix} A_i \\ x_i \end{pmatrix} \in S$ with rank k we have:

h rank k we have: (1) for every $\{b_1, b_2, \dots, b_k\} \subseteq X \quad \mu = \begin{pmatrix} A_i \\ b_i \end{pmatrix} \in S;$

(2) for every $\{y_1, y_2, \ldots, y_k\} \subseteq X$ there exists $\lambda \in S$ such that $y_i \in \lambda^{-1}(x_i), i = \overline{1, k}$.

If a cotransitive subsemigroup $S \subseteq T_n$ contains element of rank k > 1, then there exists such family of partitions $\{\pi_{\alpha} | \alpha \in S'\}, S' \subseteq S$ of a set X, that separates any its k elements. For k = 1 there is the trivial partition $\rho(1)$ with one block.

Partitions $X = \bigcup_{i=1}^{k} A_i = \bigcup_{i=1}^{k} B_i$ are of the same type if sets $(|A_1|, |A_2|, \dots, |A_k|)$ and $(|B_1|, \dots, |A_k|)$

 $|B_2|, \ldots, |B_k|$ differ only in ordering. The partition $X = \bigcup_{i=1}^k A_i$ is called *less* than $X = \bigcup_{i=1}^r B_i$ if every block B_i of the second partition is a union of several blocks of the first partition. We denote the lattice of all partitions of a set X by *Part X*.

LEMMA 1. Let $\{\rho_j(k)\}_{j\in J}$ is such family of partitions of a set X into k > 1 blocks, that separates any its k elements, $Q_k = \{\rho \in Part X \mid \rho_j(k) \leq \rho \text{ for some } j \in J\}$. Then for k < n $S = \{\alpha \in T_n \mid \pi_\alpha \in \bigcup_{i=1}^k Q_i\}$ is cotransitive subsemigroup of semigroup T_n .

LEMMA 2. Let $\mu_1, \mu_2, \ldots, \mu_m$ is a family of partitions of a set X into k blocks (1 < k < n), $\{\rho_j\}_{i \in J}$ is a family of all partitions of a set X, such that are of the same type with one of μ_i , and

 $Q = \{ \rho \in Part X \mid \rho_j \leq \rho \text{ for some } j \in J \}.$ Then $S = S_n \bigcup \{ \alpha \in T_n \mid \pi_\alpha \in Q \}$ is cotransitive subsemigroup of semigroup T_n .

Obviously, subgroup S_n is also a cotransitive subsemigroup of semigroup T_n .

Listed subsemigroups exhaust all cotransitive subsemigroups of semigroup T_n .

The following concept was introduced by I. Levi in the paper [2]. Subsemigroup $S \subseteq T_n$ is called S_n -normal if for any $g \in S_n g^{-1}Sg = S$.

THEOREM 1. Cotransitive subsemigroup of semigroup T_n is S_n -normal if and only if it is a union of equivalence classes, corresponding to the same type of partition X.

References

1. R. P. Sullivan, *Ideals in transformation semigroups*, Comment. Math. Univ. Carolin. **19** (1978), 431–446.

2. I. Levi, Congruences on normal transformation semigroups Math. Jap. 52 (1980), no. 2, 247–261.

CONTACT INFORMATION

Tetiana Voloshyna

Department of Information Systems, Physics and Mathematics, Lesia Ukrainka Eastern European National University, Lutsk, Ukraine *Email address*: tetianavoloshyna@gmail.com

Key words and phrases. Cotransitive subsemigroups, transformation semigroup

On σ -local Fitting Classes

NIKOLAY T. VOROB'EV

Throughout this paper all groups are finite. The notations and terminologies are standard as in [1].

Let σ is some partition of the set of all primes \mathbb{P} . If G is a finite group and \mathfrak{F} is a Fitting class of finite groups, then the symbol $\sigma(G)$ denotes the set $\{\sigma_i : \sigma_i \cap \pi(|G|) \neq \emptyset\}$ and $\sigma(\mathfrak{F}) = \bigcup_{G \in \mathfrak{F}} \sigma(G)$. Following [3], we call any function f of the form $f : \sigma \to \{\text{Fitting class}\}$ a Hartley σ -function (or simply H_{σ} -function), and we put $LR_{\sigma}(f) = (G : G = 1 \text{ or } G \neq 1 \text{ and } G^{\mathfrak{E}_{\sigma_i}\mathfrak{E}_{\sigma'_i}} \in f(\sigma_i) \text{ for all } \sigma_i \in \sigma(G)$). If there is a H_{σ} -function f such that $\mathfrak{F} = LR_{\sigma}(f)$, then we say that \mathfrak{F} is σ -local and f is a σ -local definition of \mathfrak{F} .

Note that in the case when $\sigma = \sigma^1 = \{\{2\}, \{3\}, \ldots\}, \sigma$ -local Fitting class \mathfrak{F} is local [2] and we use symbol LR(f) instead $LR_{\sigma}(f)$. Let $\mathfrak{F} = LR_{\sigma}(f)$ for some H_{σ} -function f. Then we say that: (a) f is *integrated* if $f(\sigma_i) \subseteq \mathfrak{F}$ for all i; (b) f is full if $f(\sigma_i) \mathfrak{E}_{\sigma_i} = f(\sigma_i)$ for all i; (c) full *integrated* if f is full and integrated.

Recall that a Fitting class is a Lockett class, if the \mathfrak{F} -radical of the direct product of groups G and H is the direct product of the \mathfrak{F} -radical of G and \mathfrak{F} -radical of H for all groups G and H.

THEOREM 1. Every σ -local Fitting class can be defined by a unique full integrated H_{σ} -function F such that $F(\sigma_i) = F(\sigma_i) \mathfrak{E}_{\sigma_i} \subseteq \mathfrak{F}$ for all $\sigma_i \in \sigma(\mathfrak{F})$ and the value $F(\sigma_i)$ for every $\sigma_i \in \sigma(\mathfrak{F})$ is a Lockett class.

THEOREM 2. Every product $\mathfrak{F} \diamond \mathfrak{H}$ of two σ -local Fitting classes \mathfrak{F} and \mathfrak{H} is a σ -local Fitting class.

In the case when $\sigma = \sigma^1$, we get from Theorem 1 and Theorem 2 the well-known results [2] and [3] for local Fitting classes.