References

- 1. K. Doerk and T. Hawkes, *Finite soluble groups*, Berlin New York : Walter de Gruyter, 1992.
- 2. N. T. Vorob'ev, Local products of Fitting classes, Vesti AN BSSR, sez. fiz. matem. navuk, 6 (1991), 28–32.
- N. T. Vorob'ev, On largest integrated of Hartley's function, Proc. Gomel University, Probl. Algebra, 1 (2000), 8–13.

CONTACT INFORMATION

Nikolay T. Vorob'ev

Department of Mathematics, Masherov Vitebsk State University, Vitebsk, Belarus *Email address*: vorobyovnt@tut.by

Key words and phrases. Finite group, Fitting class, Hartley σ -function, σ -local Fitting class, Lockett class.

This research was partially supported by the State Research Programme "Convergence" of Belarus (2016 - 2020).

On σ -local Fitting sets

NIKOLAY T. VOROB'EV, KATHERINE LANTSETOVA

Throughout this paper all groups are finite. The notations and terminologies are standard as in [1], G always denotes a group, |G| is the order of G.

Let \mathbb{P} be the set of all primes. If n is an integer, the symbol $\pi(n)$ denotes the set of all primes dividing n; as usual, $\pi(G) = \pi(|G|)$, the set of all primes dividing the order of G. Following [2], σ is a partition of \mathbb{P} , that is, $\sigma = \{\sigma_i : i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i, \sigma_i \bigcap \sigma_j = \emptyset$ for all $i \neq j$; $\sigma(n) = \{\sigma_i : \sigma_i \bigcap \pi(n) \neq \emptyset\}$; $\sigma(G) = \sigma(|G|)$. A set \mathcal{F} of subgroups of G [1] is called a *Fitting* set of G if the following conditions are satisfied: i) If $T \trianglelefteq S \in \mathcal{F}$, then $T \in \mathcal{F}$; ii) If $S, T \in \mathcal{F}$ and $S, T \trianglelefteq ST$, then $ST \in \mathcal{F}$; iii) If $S \in \mathcal{F}$ and $x \in G$, then $S^x \in \mathcal{F}$. A class \mathfrak{F} of groups is said a *Fitting* class [1] if it is closed under taking normal subgroups and products of normal \mathfrak{F} -subgroups. Let \mathfrak{E}_{σ_i} be the class of all σ_i -groups and $\mathfrak{E}_{\sigma'_i}$ be the class of all σ'_i -groups.

For a Fitting set \mathcal{F} of G and a Fitting class \mathfrak{X} [3], we call the set $\{H \leq G : H/H_{\mathcal{F}} \in \mathfrak{X}\}$ of subgroups of G the product of \mathcal{F} and \mathfrak{X} and denote it by $\mathcal{F} \odot \mathfrak{X}$.

A function $f : \sigma \to \{\text{Fitting sets of } G\}$ a Hartley σ -function (or simply H_{σ} -function of Gand we put

$$LFS_{\sigma}(f) = \{ H \le G : H = 1 \text{ or } H \ne 1 \text{ and } H^{\mathfrak{e}_{\sigma_i}\mathfrak{e}_{\sigma_i'}} \in f(\sigma_i) \text{ for all } \sigma_i \in \sigma(G) \}$$
(1)

DEFINITION 1. Let \mathcal{F} be a Fitting set of G. If there is an H_{σ} -function f such that $\mathcal{F} = LFS_{\sigma}(f)$, then we say that \mathcal{F} is σ -local and f is a σ -local definition of \mathcal{F} .

If $H \leq G$, then Fitset(H) will denote the intersection of all Fitting sets of G that contain H. Clearly Fitset(H) is again a Fitting set of G, and so we call it the *Fitting set generated by* H. A function f of Fitting set \mathcal{F} is called full, if $f(\sigma_i) = f(\sigma_i) \odot \mathfrak{E}_{\sigma_i}$ for all $\sigma_i \in \sigma(\mathcal{F})$, where $\sigma(\mathcal{F})$ is the set of all primes dividing the order of all \mathcal{F} -subgroups of G.

THEOREM 1. Let \mathcal{F} be a σ -local Fitting set of G. Then

- (a) \mathcal{F} can be defined by a unique minimal H_{σ} -function f such that
 - $f(\sigma_i) = Fitset(H \le G : H = (X^{\mathfrak{E}_{\sigma_i}\mathfrak{E}_{\sigma_i'}})^x, X \in \overline{\mathcal{F}} and x \in G) for all \sigma_i \in \sigma(\mathcal{F}).$
- (b) \mathcal{F} can be defined by a unique full minimal H_{σ} -function \underline{f} such that $\underline{\underline{f}} = Fitset(H \leq G : H^{\mathfrak{E}_{\sigma_i}} = (X^{\mathfrak{E}_{\sigma_i}\mathfrak{E}_{\sigma_i'}})^x, X \in \mathcal{F} \text{ and } x \in G) \odot \mathfrak{E}_{\sigma_i} \text{ for all } \sigma_i \in \sigma(\mathcal{F}).$

References

- 1. K. Doerk and T. Hawkes, *Finite soluble groups*, Berlin New York : Walter de Gruyter, 1992.
- 2. C. Zhang and A. N. Skiba, On Σ_t^{σ} -closed classes of finite groups, Ukrainian Math. J., 70:12, (2018), 1707-1716.
- N. Yang, W. Guo, N. T. Vorob'ev, On *S*-injectors of Fitting set of a finite group, Comm. Algebra, 46:1, (2018), 217-229.

CONTACT INFORMATION

Nikolay T. Vorob'ev

Department of Mathematics, Masherov Vitebsk State University, Vitebsk 210038, Belarus *Email address*: vorobyovnt@tut.by

Katherine Lantsetova

Email address: LantcetovaED@tut.by

Key words and phrases. List of all key words, separated by commas or semicolons

This research was partially supported by the State Research Programme "Convergence" of Belarus (2016 - 2020).

On the characteristic of Fischer class

SERGEY VOROB'EV, HANNA VAITKEVICH

Throughout this paper, all groups are finite. In the definitions and notation, we follow [1]. Remind that class \mathfrak{F} is a *Fitting class* if and only if the following two conditions are satisfied: (i) If $G \in \mathfrak{F}$ and $N \leq G$, then $N \in \mathfrak{F}$;

(ii) If $M, N \leq G = MN$ with M and N in \mathfrak{F} , then $G \in \mathfrak{F}$.

For a class $\mathfrak F$ of groups we define:

$$\mathsf{N}_0\mathfrak{F} = (G : \exists K_i \trianglelefteq \trianglelefteq G \ (i=1,\ldots,r) \ with \ K_i \in \mathfrak{F} \ and \ G = \langle K_1,\ldots,K_r \rangle). \tag{1}$$

A class \mathfrak{F} of arbitrary groups is called a *Fischer class* if (i) $\mathfrak{F} = N_0 \quad \mathfrak{F} \neq \emptyset$, and

(ii) If $K \leq G \in \mathfrak{F}$ and H/K is a nilpotent subgroup of G/K, then $H \in \mathfrak{F}$.

DEFINITION 1. Let G be a group and \mathfrak{F} a class of groups. (a) We define

$$\sigma(G) = \{ p: \ p \in \mathbb{P} \ and \ p ||G| \} \ and$$
$$\sigma(\mathfrak{F}) = \bigcup \{ \sigma(F), \ F \in \mathfrak{F} \}.$$

(b) We also define

 $Char(\mathfrak{F}) = \{ p: p \in \mathbb{P} \text{ and } Z_p \in \mathfrak{F} \},\$

and call $\operatorname{Char}(\mathfrak{F})$ the *characteristic* of \mathfrak{F} .

Let \mathbb{P} be a the set of all primes, $\pi \subseteq \mathbb{P}$, \mathfrak{N}_{π} and \mathfrak{E}_{π} the class of all nilpotent π -groups and the class of all π -groups respectively.

THEOREM 1. Let \mathfrak{F} be a Fischer class and $\pi = \sigma(\mathfrak{F})$. Then:

$$1)Char(\mathfrak{F}) = \pi; \tag{2}$$

$$2)\mathfrak{N}_{\pi} \subseteq \mathfrak{F} \subseteq \mathfrak{E}_{\pi} \tag{3}$$