We shown that if \mathfrak{F} is not a Fischer class, then the conditions (2) and (3) theorem 1 are not true.

References

1. K. Doerk and T. Hawkes, Finite soluble groups, Berlin - New York : Walter de Gruyter, 1992.

CONTACT INFORMATION

Sergey Vorob'ev

Department of Mathematics, Masherov Vitebsk State University, Vitebsk, Belarus *Email address*: belarus8889@mail.ru

Hanna Vaitkevich

Department of Mathematics, Masherov Vitebsk State University, Vitebsk, Belarus *Email address*: voytkevich.a0406@gmail.com

Key words and phrases. Fitting class, Fischer class, characteristic of Fischer class

This research was partially supported by the State Research Programme "Convergence" of Belarus (2016 - 2020).

On adjoint groups of radical rings

VLADISLAV G. YURASHEV

An associative algebra R without identity is called radical if the set of its elements forms a group with respect to the operation $a \circ b = a + b + ab$ and R is nilpotent if $R^n = 0$ for some positive integer n. It is well-known that every nilpotent algebra is radical and the set of elements of R forms a group with respect to the operation $a \circ b = a + b + ab$ with $a, b \in R$. This group is called the adjoint group of R and is denoted by R° . Obviously any subalgebra of R is a subgroup of R° , but the converse is not true.

Radical algebras whose all subgroups of their adjoint groups are subalgebras were described in [1]. Recall also that a finite group G is said to be a Miller–Moreno group if G is non-abelian and all proper subgroups of G are abelian. The following assertion is proved in [2], Lemma 3.3.

LEMMA 1. Let a Miller-Moreno p-group G be the adjoint group of a nilpotent p-algebra. Then one of the following statements holds:

- 1) G is a metacyclic 2-group of order at most 16;
- 2) G is a non-metacyclic 2-group of exponent 4 and of order at most 32;
- 3) G is a non-abelian p-group of order p^3 and exponent p for odd p.

Using this lemma and the description of radical algebras given in [1], the following statement can be verified.

PROPOSITION 1. If a Miller-Moreno p-group G is the adjoint group of a nilpotent algebra R, then every subgroup of G is a subalgebra in R.

It was proved in [3], Theorem 4.3, that every radical ring and in particular algebra whose adjoint group is generated by two elements is nilpotent. From this and Proposition 1 the following result is derived.

THEOREM 1. Let R be a radical algebra over a field of prime characteristic p. Then the following statements are equivalent:

- 1) every subgroup of the adjoint group R° is a subalgebra in R;
- 2) every abelian subgroup of the adjoint group R° is a subalgebra in R;

3) every non-abelian subgroup of the adjoint group R° is a subalgebra in R.

References

- S. V. Popovich and Ya. P. Sysak, Radical algebras subgroups of whose adjoint groups are subalgebras, Ukrainian Math. J. 49 (1997), 1855–1861.
- B. Amberg and L. S. Kasarin, On the adjoint group of a finite nilpotent p-algebra, J. Math. Sci. 102 (2000), 3979–3997.
- Ya. P. Sysak, The adjoint group of radical rings an related questions, Ischia Group Theory 2010, 344–365, World Sci. Publ., Hackensack, NJ, 2012.

CONTACT INFORMATION

Vladislav G. Yurashev

Department of Algebra and Topology, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine

Email address: yurashev150194@gmail.com

Key words and phrases. Nilpotent algebra, radical algebra, Miller-Moreno group, adjoint group

Commutative Bezout ring, which is a ring of neat range 1

Bohdan Zabavskyi, Olha Domsha

All rings considered will be commutative with nonzero unit.

Recall that ring is Bezout ring if it finitely generated ideals is principal. Ring R is said to have a stable range 2 if for every elements $a, b, c \in R$ such that aR + bR + cR = R we have (a + cx)R + (b + cy)R = R for some elements $x, y \in R$. Ring R is called an elementary divisor ring if for any matrix A of order $n \times m$ over R there exist invertible matrices $P \in GL_n(R)$ and $Q \in GL_m(R)$ such that PAQ = D is a diagonal matrix, $D = (d_{ii})$ and $d_{i+1,i+1}R \subset d_{ii}R$. A ring R is called a clean ring if for any $a \in R$ there exist invertible element $u \in R$ and idempotent $e \in R$ such that a = e + u. Element $a \in R$ is called a neat element if factor-ring R/aR is a clean ring. Ring R is called a ring of neat range 1 if from condition aR + bR = R implies that a + btis a neat element for some $t \in R$.

PROPOSITION 1. Let R be a commutative Bezout ring of neat range 1. Then for any ideal I of R factor-ring R/I is a ring of neat range 1.

PROPOSITION 2. A commutative Bezout ring is a ring of neat range 1 if and only if factor-ring R/J(R) is a ring of neat range 1 (where J(R) – is Jacobson radical).

THEOREM 1. Commutative Bezout ring in which all zero divisors are in Jacobson radical is an elementary divisor ring if and only if it is a ring of neat range 1.

References

1. B. Zabavsky *Diagonal reduction of matrices over rings*, Mathematical Studies, Monograph Series, volume XVI, VNTL Publishers, Lviv, 2012.

CONTACT INFORMATION

Bohdan Zabavskyi

Ivan Franko National University of Lviv, Lviv, Ukraine *Email address*: zabavskii@gmail.com