For the limit \(q \to q^{-1} \) we get
\[
\{n, m\} \equiv \lim_{q \to 1} [n, m]_q = \lim_{q \to 1} [n, m]_{q^{-1}} = \frac{1}{2}(n+1)(m+1)(n+m+2) = \dim \Gamma_{n,m},
\]
\[
\{n-1, n-1\} = n^3 = \dim \Gamma_{n-1,n-1},
\]
\[
\{n-1, 0\} = \{0, n-1\} = \frac{n(n+1)}{2} = \dim \Gamma_{n-1,0}
\]
For \(p \to 1 \) the \((q,p)\)-numbers \([r]_{q,p}\) turn into the Jackson \(q\)-numbers \([r]_q \equiv (1 - q^n)/(1 - q)\). We prove that
\[
[n, m]_{q,1} = q^{-(n+m)} \frac{[n+m+2]_q [n+1]_q [m+1]_q}{[2]_q},
\]
\[
[n, m]_{q,1} = q^{-2n} \frac{[n+1]^2_q [2(n+1)]_q}{[2]_q},
\]
\[
[n-1, 0]_{q,1} = q^{-n} \frac{[n]_q [n+1]_q}{[2]_q}.
\]

References

Contact information

Leonid Bedratyuk
Faculty of Programming, Computer and Telecommunication Systems, Khmelnytskyi National University, Khmelnytskyi, Ukraine
Email address: leonid.uk@gmail.com

Ivan Kachuryk
Department of Computer Science, Glukhiv National Pedagogical University, Glukhiv, Ukraine

Some properties of generalized hypergeometric Appell polynomials

Leonid Bedratyuk, Natalia Luno

In [1], P.Appell presented the sequence of polynomials \(\{A_n(x)\} \), \(n = 0, 1, 2, \ldots \) which satisfies the following relation
\[
A'_n(x) = nA_{n-1}(x),
\]
and possesses the exponential generating function
\[
A(t)e^t = \sum_{n=0}^{\infty} A_n(x) \frac{t^n}{n!},
\]
where \(A(t) \) is a formal power series
\[
A(t) = a_0 + a_1 t + a_2 \frac{t^2}{2!} + \cdots + a_n \frac{t^n}{n!} + \cdots, a_0 \neq 0.
\]

The Appell type polynomials appear at the different areas of mathematics, namely, at special functions, general algebra, combinatorics and number theory. Recently, the Appell type
polynomials are of big interest. New approaches based on the determinant method and Pascal matrix method are applied (see, e.g., [2]–[3]).

Monomials x^n, Bernoulli polynomials, Euler polynomials and Hermite polynomials are the examples of the Appell type polynomials ([4]).

DEFINITION. Let us

$$\Delta(k, -n) = \frac{n}{k}, -\frac{n - 1}{k}, \ldots, -\frac{n - k + 1}{k}, \quad k, n \in \mathbb{Z}. $$

Then polynomials $A_n^{(k)}(m, x)$, $n = 0, 1, 2, \ldots$ where

$$A_n^{(k)}(x) = x^k N_{m+n} \left[\Delta(k, -n), \alpha_1, \alpha_2, \ldots, \alpha_p; \beta_1, \beta_2, \ldots, \beta_q \mid \frac{m}{x^k} \right],$$

and $m, k \in \mathbb{N}_0$, $\alpha_1, \alpha_2, \ldots, \alpha_p, \beta_1, \beta_2, \ldots, \beta_p$ are the arbitrary number sets, we call generalized hypergeometric Appell polynomials.

In the case when $p = 0, q = 0, k := m, h := \frac{(-1)^k}{k^k}$ the generalized hypergeometric Appell polynomials $A_n^{(k)}(p, q; x)$ became the Gould-Hoppers polynomials [5], and with $p = 0, q = 0$ and $k = 2$ they are the well-known Hermite polynomials.

Theorem 1. Generalized hypergeometric Appell polynomials $A_n^{(k)}(m, x)$ are the Appell type polynomials.

Proof. To prove it one should replace $t \mapsto xt, \quad x \mapsto \frac{m}{x^k}$, in problem 26, p.173 [6], then the function $A(t)$ takes a form

$$A(t) = p F_q \left[a_1, a_2, \ldots, a_p; b_1, b_2, \ldots, b_q \mid (-1)^k \frac{t^k}{k^k} \right].$$

□

Using the derivative properties of the composition of functions and the hypergeometric function we obtain

Theorem 2. The following identity holds

$$nx^{k-1} p F_q \left[a_1, a_2, \ldots, a_p; b_1, b_2, \ldots, b_q \mid \frac{m}{x^k} \right] = $$

$$= km \frac{a_1 a_2 \ldots a_p}{b_1 b_2 \ldots b_q} \Delta_1(k, -n) p F_q \left[a_1 + 1, a_2 + 1, \ldots, a_p + 1, \Delta(k, -n) + 1; b_1 + 1, b_2 + 1, \ldots, b_q + 1 \mid \frac{m}{x^k} \right] + $$

$$+ nx^k p F_q \left[a_1, a_2, \ldots, a_p; b_1, b_2, \ldots, b_q \mid \Delta(k, -n + 1) \frac{m}{x^k} \right],$$

where

$$\Delta_1(k, -n) = \left(-\frac{n}{k}\right) \cdot \left(-\frac{n - 1}{k}\right) \cdots \left(-\frac{n - k + 1}{k}\right).$$

Further on, the generalized hypergeometric Appell polynomials possess the convolution type property.

Theorem 3.

$$\sum_{i=0}^n (-1)^i \binom{n}{i} A_i^{(k)}(m, 0) A_{n-i}^{(k)}(m, 0) = 2^n A_n^{(k)}(m, 0).$$

Proof. The proof is based on the method proposed in [7]. □
References

1. P. Appell, *Sur une classe de polynomes* [On one class of polynomials], Annales scientifiques de l'E.N.S. 2e serie, tome 9, 1880, 119-144.

Contact information

Leonid Bedratyuk
Department of Computer Engineering and Systems Programming, Khmelnytskyi National University, Khmelnytskyi, Ukraine
Email address: leonid.uk@gmail.com

Nataliia Luno
Department of Mathematics and Computer Science, Vasyl’ Stus Donetsk National University, Vinnytsya, Ukraine
Email address: nlunio@ukr.net

Key words and phrases. Appell polynomials, Appell sequence, hypergeometric function, generalized Hermite polynomials

Tensor products of indecomposable integral matrix representations of the symmetric group of third degree

Diana Biletska, Ihor Shapochka

Let S_3 be the symmetric group of third degree with generators a, b and relations: $a^2 = b^3 = e$, $ba = ab^2$, where e is the identity of S_3. The result, which we have obtained, is based on the classification of all non-equivalent indecomposable integral matrix representations of the group S_3, obtained by L. A. Nazarova and A. V. Roiter [1]. The following representations of the group S_3 over the ring \mathbb{Z} of rational integers presents all indecomposable integral pairwise