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A ring 𝑅 is called 𝐸𝐼𝐷-ring in case of an indempotent matrix over 𝑅 possesses elementary-
idempotent reduction, i.e.for an indempotent matrix 𝐴 over the ring 𝑅 there exist such elementary
matrices over 𝑅, 𝑈1, . . . , 𝑈𝑙 of respectful size that

𝑈1 · · ·𝑈𝑙 · 𝐴 · (𝑈1 · · ·𝑈𝑙)
−1 = 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, . . . , 𝑑𝑟, 0, . . . , 0),

where 𝑙, 𝑟 ∈ N.
An idempotent 𝑒 in a ring 𝑅 is called right (left) semicentral if for every 𝑥 ∈ 𝑅, 𝑒𝑥 = 𝑒𝑥𝑒

(𝑥𝑒 = 𝑒𝑥𝑒). And the set of right (left) semicentral idempotents of 𝑅 is denoted by 𝑆𝑟(𝑅) (𝑆𝑙(𝑅)).
We define a ring 𝑅 semiabelian if 𝐼𝑑(𝑅) = 𝑆𝑟(𝑅) ∪ 𝑆𝑙(𝑅).

All other necessary definitions and facts can be found in [1, 2, 3].

Theorem 1. Let 𝑅 be an semiabelian ring and 𝐴 be an 𝑛× 𝑛 idempotent matrix over 𝑅. If
there exist elementary matrices 𝑃1, . . . , 𝑃𝑘 and 𝑄1, . . . , 𝑄𝑠 such that 𝑃1 · · ·𝑃𝑘 · 𝐴 ·𝑄1 · · ·𝑄𝑠 is a
diagonal matrix, then there is elementary matrices 𝑈1, . . . , 𝑈𝑙 such that 𝑈1 · · ·𝑈𝑙 ·𝐴 · (𝑈1 · · ·𝑈𝑙)

−1

is diagonal matrix.

Theorem 2. Let 𝑅 be an semiabelian ring. Then a ring with elementary reduction of
matrices is an 𝐸𝐼𝐷-ring.

Theorem 3. The following are equivalent for a semialelian ring 𝑅:
(a) Each idempotent matrix over 𝑅 is diagonalizable under a elementary transformation.
(b) Each idempotent matrix over 𝑅 has a charateristic vector.

Theorem 4. Let 𝑅 be an semiabelian ring, 𝑁 be the set of nilpotents in 𝑅, and 𝐼 be an
ideal in 𝑅 with 𝐼 ⊆ 𝑁 . Then 𝑅/𝐼 is an 𝐸𝐼𝐷-ring, if and only if 𝑅 is an 𝐸𝐼𝐷-ring.
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Higher power moments of the Riesz mean error term of

hybrid symmetric square L-function

Olga Savastru

Let 𝑓(𝑧) =
∑︀∞

𝑛=1 𝑎𝑓 (𝑛)𝑒2𝜋𝑖𝑛𝑧 be a holomorphic cusp form of even weight 𝑘 ≥ 12 for the full
modular group 𝑆𝐿(2,Z), 𝑧 ∈ 𝐻, 𝐻 = {𝑧 ∈ C|𝐼𝑚(𝑧) > 0} is the upper half plane. We suppose
that 𝑓(𝑧) is a normalized eigenfunction for the Hecke operators 𝑇 (𝑛)(𝑛 ≥ 1) with 𝑎𝑓 (1) = 1.
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In [1], Shimura introduced the function 𝐿(𝑠, 𝑠𝑦𝑚2𝑓, 𝜒). For an arbitrary primitive Dirichlet
character 𝜒 mod 𝑑, the hybrid symmetric square L-function attached to 𝑓 is defined as the
following Euler product:

𝐿(𝑠, 𝑠𝑦𝑚2𝑓, 𝜒) :=
∏︁
𝑝

(1− 𝛼2
𝑓 (𝑝)𝜒(𝑝)𝑝−𝑠)(1− 𝜒(𝑝)𝑝−𝑠)−1

×(1− 𝛼2
𝑓 (𝑝)𝜒(𝑝)𝑝−𝑠)

for ℜ𝑠 > 1.
Let ∆𝜌(𝑡, 𝑠𝑦𝑚

2𝑓, 𝜒) be the error term of the Riesz mean of the hybrid symmetric square
L-function. We study the higher power moments of ∆𝜌(𝑡, 𝑠𝑦𝑚

2𝑓, 𝜒). Particularly, for 𝜌 = 1/2,
we prove the following result.

Theorem 1. Let 𝑋 > 1 be a real number. For any fixed 𝜖 > 0, we have that∫︁ 𝑋

0

∆ℎ
1
2
(𝑡, 𝑠𝑦𝑚2𝑓, 𝜒)𝑑𝑡 =

6𝐵 1
2
(ℎ, 𝑐)𝑑

3ℎ
2

(3 + 2ℎ)(2𝜋)
3ℎ
2 3

ℎ
2

𝑋
2
3
ℎ+1 +𝑂(𝑋

1+ 2
3
ℎ−𝜆 1

2
(ℎ,6)+𝜖

𝑑
3ℎ
2
+𝜖),

holds for h = 3, 4, 5, where the 𝑂-constant depends on ℎ and 𝜖.
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Connection between automatic sequences and

endomorphisms of rooted trees via 𝑑-adic dynamics

Dmytro M. Savchuk, Rostislav I. Grigorchuk

The ring Z𝑑 of 𝑑-adic integers has a natural interpretation as the boundary of a rooted 𝑑-ary
tree 𝑇𝑑. Endomorphisms of this tree are in one-to-one correspondence with 1-Lipschitz mappings
from Z𝑑 to itself. Therefore, one can use the language of endomorphisms of rooted trees and, in
particular, the language and techniques of Mealy automata (see, for example, [5]), to study such
mappings. For example, polynomial transformations of Z𝑑 in this context were studied in [1].
Each continuous transformation 𝑓 : Z𝑑 → Z𝑑 can be decomposed into its van der Put series

𝑓(𝑥) =
∑︁
𝑛≥0

𝐵𝑓
𝑛𝜒𝑛(𝑥),

where (𝐵𝑓
𝑛)𝑛≥0 ⊂ Z𝑑 is a unique sequence of 𝑑-adic integers, and 𝜒𝑛(𝑥) is the characteristic

function of the cylindrical set consisting of all 𝑑-adic integers with prefix [𝑛]𝑑 (here by [𝑛]𝑑 we
mean the image of 𝑛 in Z𝑑 under the natural embedding Z→ Z𝑑 that is obtained by reversing
the 𝑑-ary expansion of 𝑛). The coefficients 𝐵𝑓

𝑛 are called the van der Put coefficients of 𝑓 and
are computed as follows:

𝐵𝑓
𝑛 =

{︂
𝑓(𝑛), if 0 ≤ 𝑛 < 𝑑,
𝑓(𝑛)− 𝑓(𝑛_), if 𝑛 ≥ 𝑑,

(1)
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