CONTACT INFORMATION

Aleksandr Tsarev
Department of Mathematics, Jeju National University, Jeju-si, South Korea
Department of Mathematics & IT, P.M. Masherov Vitebsk State University, Vitebsk, Belarus
Email address: alex_vitebsk@mail.ru

Key words and phrases. Finite ring, formation, lattice of formations, algebraic lattice, modular lattice

This work has been partially supported by the grant F19RM-071 from the Belarusian Republican Foundation for Fundamental Research.

On induced modules over group rings of groups of finite rank

ANATOLII V. TUSEV

Let G be a group and k be a field. A kG-module M is said to be imprimitive if there are a subgroup $H < G$ and a kH-submodule $N \leq M$ such that $M = N \otimes_{kH} kG$. If the module M is not imprimitive then it is said to be primitive. A representation of the group G is said to be primitive if the module of the representation is primitive.

Let G be a group of finite rank $r(G)$ and k be a field. A kG-module M is said to be semi-imprimitive if there are subgroup $H < G$ and a kH-submodule $N \leq M$ such that $r(H) < r(G)$ and $M = N \otimes_{kH} kG$. If the module M is not semi-imprimitive then it is said to be semi-primitive. A representation of the group G is said to be semi-primitive if the module of the representation is semi-primitive. An element $g \in G$ (a subgroup $H \leq G$) is said to be orbital if $|G : C_G(g)| < \infty$ ($|G : N_G(H)| < \infty$). The set $\Delta(G)$ of all orbital elements of G is a characteristic subgroup of G which is said to be the FC-center of G.

In [1] Harper showed that any finitely generated not abelian-by-finite nilpotent group has an irreducible primitive representation over any not locally finite field. In [3] we proved that in the class of soluble groups of finite rank with the maximal condition for normal subgroups only polycyclic groups may have irreducible primitive faithful representations over a field of characteristic zero. In [2] Harper proved that if a polycyclic group G has a faithful irreducible semi-primitive representation then $A \cap \Delta (G) \neq 1$ for any orbital subgroup A of G. It is well known that any polycyclic group is linear and has finite rank.

Theorem 1. Let G be a linear group of finite rank. Suppose that G has a normal subgroup $1 \neq A$, such that $A \cap \Delta (G) = 1$. Let k be a field of characteristic zero and let M be an irreducible kG-module such that $C_G(M) = 1$. Then there are a subgroup $S \leq G$ and a kS-submodule $U \leq M$ such that $r(S) < (G)$ and $M = U \otimes_{kS} kG$.

Corollary 1. Let G be a linear group of finite rank. If the group G has a faithful irreducible semi-primitive representation over a field of characteristic zero then $A \cap \Delta (G) \neq 1$ for any orbital subgroup A of G.

References

On irreducibility of monomial matrices of order 7 over local rings

ALEXANDER TYLYSHCHAK

The problem of classifying, up to similarity, all the matrices over a commutative ring (which is not a field) is usually very difficult; in most cases it is “unsolvable” (wild, as in the case of the rings of residue classes considered by Bondarenko [1]). In such situation, an important place is occupied by irreducible and indecomposable matrices over rings.

Let \(R \) be a commutative local ring with identity with Jacobson radical \(\text{Rad} R = tR, \ t \neq 0 \), \(n, k \) be a natural, \(0 < k < n \),

\[
M(t, k, n) = \begin{pmatrix}
0 & \ldots & 0 & 0 & \ldots & 0 & t \\
1 & \ldots & 0 & \ldots & 0 & 0 & \ldots \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & 1 & \ldots & 0 & 0 & \ldots \\
\vdots & \ldots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \ldots & 0 & \ldots & 0 & 0 & 0 \\
0 & \ldots & 0 & \ldots & t & 0 & 0
\end{pmatrix}
\]

be an \(n \times n \)-matrix. This matrices first arose in studying indecomposable representations of finite \(p \)-groups over commutative local rings [2].

The question when matrix \(M(t, k, n) \) is reducible had been solved, in particular, in following cases.

<table>
<thead>
<tr>
<th>(M(t, k, n))</th>
<th>Case</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>irreducible</td>
<td>(k = 1, n - 1, \ t \neq 0)</td>
<td>2</td>
</tr>
<tr>
<td>reducible</td>
<td>((k, n) > 1)</td>
<td>3</td>
</tr>
<tr>
<td>irreducible</td>
<td>(n < 7, \ (k, n) = 1, \ t \neq 0)</td>
<td>4</td>
</tr>
<tr>
<td>reducible</td>
<td>(n = 7, \ k = 3, 4, \ t^2 = 0)</td>
<td>[4, 5]</td>
</tr>
</tbody>
</table>

Theorem 1. Let \(n = 7, 0 < k < n, \ t^2 \neq 0 \). The matrix \(M(t, k, n) \) is irreducible over \(R \).

These studies were carried out together with V. M. Bondarenko.

References