Finite groups with given properties of normalizers of Sylow subgroups

ALEXANDER VASILYEV, TATSIANA VASILYeva, ANASTASIYA MELCHANKA

We consider only finite groups. We use notations and definitions from [1].

Let F be a non-empty formation. A subgroup H is called F-subnormal in G, if either $H = G$, or there exists a maximal chain of subgroups $H = H_0 \leq H_1 \leq \cdots \leq H_{n-1} \leq H_n = G$ such that $H_i \in F$ for $i = 1, \ldots, n$.

Recall that the class of groups w^*F is defined as follows:

$$w^*F = \{ G \mid \pi(G) \subseteq \pi(F) \text{ and every normalizer of Sylow subgroup of } G \text{ is } F \text{-subnormal in } G \}.$$

Theorem 1. Let F be a non-empty hereditary formation. Then the following statements are true.

1. $F \subseteq w^*F$.
2. $w^*F = w^*(w^*F)$.
3. If a formation $F_1 \subseteq F$ then $w^*F_1 \subseteq w^*F$.
4. w^*F is a formation and from $G \in F$ it follows that every Hall subgroup of G belongs to F.

According to [2], the arithmetic length of a soluble group G is defined as $\max \{ l_p(G) \}$, where $l_p(G)$ is p-length of the group G for all $p \in \pi(G)$. Note that the class $L_a(1)$ of all soluble groups whose arithmetic length ≤ 1 is a hereditary saturated Fitting formation.

Theorem 2. Let F be a hereditary saturated formation and $F \subseteq L_a(1)$. Then $w^*F = F$.

Corollary 1.

1. [3] If N^2 is the class of all metanilpotent groups, then $w^*N^2 = N^2$.
2. [3] If $N \mathfrak{A}$ is the class of all groups G with the nilpotent commutator subgroup G', then $w^*N \mathfrak{A} = N \mathfrak{A}$.
3. $w^*L_a(1) = L_a(1)$.

We note that $w^*N^3 \neq N^3$.

References

Contact information

Alexander Vasilyev
Department of Algebra and Geometry, F. Scorina Gomel State University, Gomel, Belarus
Email address: formation56@mail.ru

Tatsiana Vasilyeva
Department of Algebra and Geometry, F. Scorina Gomel State University, Department of High Mathematics, Belarusian State University of Transport, Gomel, Belarus
Email address: tivasilyeva@mail.ru

Anastasiya Melchanka
Department of Algebra and Geometry, F. Scorina Gomel State University, Gomel, Belarus
Email address: melchenkonastya@mail.ru

Key words and phrases. Finite group, normalizer of Sylow subgroup, hereditary saturated formation, F-subnormal subgroup

Cotransitive subsemigroups of the full transformation semigroup T_n

Tetiana Voloshyna

The concept of a cotransitive subsemigroup for transformations semigroups was introduced by R.P. Sullivan in the work [1]. It is used to describe the ideals. We restrict ourselves to the consideration of a full transformation semigroup T_n of finite set X. For $\alpha \in T_n$ by $\pi_\alpha = \alpha \circ \alpha^{-1}$ we denote the partition of the set X into equivalence classes. Let $ran \alpha = \{x_1, x_2, \ldots, x_k\} \subseteq X$, $A_i = \alpha^{-1}(x_i)$. Subsemigroup $S \subseteq T_n$ is called cotransitive, if for every $\alpha = (A_i \mid x_i) \in S$ with rank k we have:

1. for every $\{b_1, b_2, \ldots, b_k\} \subseteq X$
 $$\mu = \left(\begin{array}{c} A_i \\ b_i \end{array} \right) \in S;$$

2. for every $\{y_1, y_2, \ldots, y_k\} \subseteq X$ there exists $\lambda \in S$ such that $y_i \in \lambda^{-1}(x_i)$, $i = 1, k$.

If a cotransitive subsemigroup $S \subseteq T_n$ contains element of rank $k > 1$, then there exists such family of partitions $\{\pi_{\alpha} \mid \alpha \in S'\}$, $S' \subseteq S$ of a set X, that separates any its k elements. For $k = 1$ there is the trivial partition $\rho(1)$ with one block.

Partitions $X = \bigcup_{i=1}^{k} A_i = \bigcup_{i=1}^{k} B_i$ are of the same type if sets ($|A_1|, |A_2|, \ldots, |A_k|$) and ($|B_1|$, $|B_2|, \ldots, |B_k|$) differ only in ordering. The partition $X = \bigcup_{i=1}^{k} A_i$ is called less than $X = \bigcup_{i=1}^{r} B_i$ if every block B_i of the second partition is a union of several blocks of the first partition. We denote the lattice of all partitions of a set X by $Part X$.

Lemma 1. Let $\{\rho_j(k)\}_{j \in J}$ is such family of partitions of a set X into $k > 1$ blocks, that separates any its k elements, $Q_k = \{\rho \in Part X \mid \rho_j(k) \leq \rho \text{ for some } j \in J\}$. Then for $k < n$

$$S = \{\alpha \in T_n \mid \pi_\alpha \in \bigcup_{i=1}^{k} Q_i\}$$

is cotransitive subsemigroup of semigroup T_n.

Lemma 2. Let $\mu_1, \mu_2, \ldots, \mu_m$ is a family of partitions of a set X into k blocks ($1 < k < n$), $\{\rho_j\}_{j \in J}$ is a family of all partitions of a set X, such that are of the same type with one of μ_i, and