We shown that if \(X \) is not a Fischer class, then the conditions (2) and (3) theorem 1 are not true.

References

Contact information

Sergey Vorob’ev
Department of Mathematics, Masherov Vitebsk State University, Vitebsk, Belarus
Email address: belarus8889@mail.ru

Hanna Vaitkevich
Department of Mathematics, Masherov Vitebsk State University, Vitebsk, Belarus
Email address: voytkevich.a0406@gmail.com

Key words and phrases. Fitting class, Fischer class, characteristic of Fischer class

This research was partially supported by the State Research Programme "Convergence" of Belarus (2016 – 2020).

On adjoint groups of radical rings

Vladislav G. Yurashev

An associative algebra \(R \) without identity is called radical if the set of its elements forms a group with respect to the operation \(a \circ b = a + b + ab \) and \(R \) is nilpotent if \(R^n = 0 \) for some positive integer \(n \). It is well-known that every nilpotent algebra is radical and the set of elements of \(R \) forms a group with respect to the operation \(a \circ b = a + b + ab \) with \(a, b \in R \). This group is called the adjoint group of \(R \) and is denoted by \(R^\circ \). Obviously any subalgebra of \(R \) is a subgroup of \(R^\circ \), but the converse is not true.

Radical algebras whose all subgroups of their adjoint groups are subalgebras were described in [1]. Recall also that a finite group \(G \) is said to be a Miller–Moreno group if \(G \) is non-abelian and all proper subgroups of \(G \) are abelian. The following assertion is proved in [2], Lemma 3.3.

Lemma 1. Let a Miller–Moreno \(p \)-group \(G \) be the adjoint group of a nilpotent \(p \)-algebra. Then one of the following statements holds:

1) \(G \) is a metacyclic \(2 \)-group of order at most 16;
2) \(G \) is a non-metacyclic \(2 \)-group of exponent 4 and of order at most 32;
3) \(G \) is a non-abelian \(p \)-group of order \(p^3 \) and exponent \(p \) for odd \(p \).

Using this lemma and the description of radical algebras given in [1], the following statement can be verified.

Proposition 1. If a Miller–Moreno \(p \)-group \(G \) is the adjoint group of a nilpotent algebra \(R \), then every subgroup of \(G \) is a subalgebra in \(R \).

It was proved in [3], Theorem 4.3, that every radical ring and in particular algebra whose adjoint group is generated by two elements is nilpotent. From this and Proposition 1 the following result is derived.

Theorem 1. Let \(R \) be a radical algebra over a field of prime characteristic \(p \). Then the following statements are equivalent:
1) every subgroup of the adjoint group \(R^\circ \) is a subalgebra in \(R \);
2) every abelian subgroup of the adjoint group \(R^\circ \) is a subalgebra in \(R \);
3) every non-abelian subgroup of the adjoint group R° is a subalgebra in R.

References

Contact information

Vladislav G. Yurashev
Department of Algebra and Topology, Institute of Mathematics of NAS of Ukraine, Kyiv, Ukraine
Email address: yurashev150194@gmail.com

Key words and phrases. Nilpotent algebra, radical algebra, Miller–Moreno group, adjoint group

Commutative Bezout ring, which is a ring of neat range 1

Bohdan Zabavskyi, Olha Domsha

All rings considered will be commutative with nonzero unit.

Recall that ring is Bezout ring if it finitely generated ideals is principal. Ring R is said to have a stable range 2 if for every elements $a, b, c \in R$ such that $aR + bR + cR = R$ we have $(a + cx)R + (b + cy)R = R$ for some elements $x, y \in R$. Ring R is called an elementary divisor ring if for any matrix A of order $n \times m$ over R there exist invertible matrices $P \in GL_n(R)$ and $Q \in GL_m(R)$ such that $PAQ = D$ is a diagonal matrix, $D = (d_{ii})$ and $d_{i+1,i+1}R \subset d_{ii}R$. A ring R is called a clean ring if for any $a \in R$ there exist invertible element $u \in R$ and idempotent $e \in R$ such that $a = e + u$. Element $a \in R$ is called a neat element if factor-ring R/aR is a clean ring. Ring R is called a ring of neat range 1 if from condition $aR + bR = R$ implies that $a + bt$ is a neat element for some $t \in R$.

Proposition 1. Let R be a commutative Bezout ring of neat range 1. Then for any ideal I of R factor-ring R/I is a ring of neat range 1.

Proposition 2. A commutative Bezout ring is a ring of neat range 1 if and only if factor-ring $R/J(R)$ is a ring of neat range 1 (where $J(R)$ – is Jacobson radical).

Theorem 1. Commutative Bezout ring in which all zero divisors are in Jacobson radical is an elementary divisor ring if and only if it is a ring of neat range 1.

References

Contact information

Bohdan Zabavskyi
Ivan Franko National University of Lviv, Lviv, Ukraine
Email address: zabavskii@gmail.com