Nataliya Golovashchuk

Department of Mechanics and Mathematics, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine

Email address: golovash@gmail.com

Key words and phrases. Bimodule problem, Tits form, representation type

The Generalized Weyl Poisson algebras and their Poisson simplicity criterion

Volodymyr Bavula

A new large class of Poisson algebras, the class of generalized Weyl Poisson algebras, is introduced. It can be seen as Poisson algebra analogue of generalized Weyl algebras. A Poisson simplicity criterion is given for generalized Weyl Poisson algebras and an explicit description of the Poisson centre is obtained. Many examples are considered.

References

1. V. V. Bavula, The Generalized Weyl Poisson algebras and their Poisson simplicity criterion, arXiv:1902.00695.

CONTACT INFORMATION

Volodymyr Bavula

School of Mathematics and Statistics, University of Sheffield, Sheffield, UK *Email address*: v.bavula@sheffield.ac.uk

Key words and phrases. The Generalized Weyl Poisson algebras, a Poisson simplicity criterion, a Poisson ideal, the classical polynomial Poisson algebra

The specialized characters of the representation of the Lie algebra sl_3 in terms of q- and (q, p)-numbers

LEONID BEDRATYUK, IVAN KACHURYK

Let Γ_{λ} be the standard irreducible complex representation of \mathfrak{sl}_3 with the highest weight $\lambda = (\lambda_1, \lambda_2) \in \mathbb{Z}^2$, dim $\Gamma_{\lambda} = (\lambda_1 + 1)(\lambda_2 + 1)(\lambda_1 + \lambda_2)/2$.

Denote by Λ the weight lattice of all finite dimensional representation of \mathfrak{sl}_3 , and let $\mathbb{Z}(\Lambda)$ be their group ring. The ring $\mathbb{Z}(\Lambda)$ is free \mathbb{Z} -module with the basis elements $e(\lambda)$, $\lambda = (\lambda_1, \lambda_2) \in \Lambda$, $e(\lambda)e(\mu) = e(\lambda + \mu)$, e(0) = 1. Let Λ_{λ} be the set of all weights of the representation Γ_{λ} . Then the formal character $\operatorname{Char}(\Gamma_{\lambda})$ is defined as formal sum $\sum_{\mu \in \Lambda_{\lambda}} n_{\lambda}(\mu)e(\mu) \in \mathbb{Z}(\Lambda)$, here $n_{\lambda}(\mu)$ is the multiplicities of the weight μ in the representation Γ_{λ} . By replacing $e(m,n) := q^n p^m$ we obtain the specialized expression for the character of $\operatorname{Char}(\Gamma_{(n,m)}) \equiv [n,m]_{q,p}$.

We establish several relations between the specialized characters $[n, m]_{qp}$ and the quantum (q, p)-numbers

$$[r]_{q,p} = \frac{q^r - p^{-r}}{q - p^{-1}},$$

and in some cases between different types of q-numbers.