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For the limit 𝑞 → 𝑞−1 we get

{𝑛,𝑚} ≡ lim
𝑞→1

[𝑛,𝑚]𝑞,𝑞 = lim
𝑞→1

[𝑛,𝑚]𝑞,𝑞−1 =
1

2
(𝑛+ 1)(𝑚+ 1)(𝑛+𝑚+ 2) = dim Γ𝑛,𝑚,

{𝑛− 1, 𝑛− 1} = 𝑛3 = dim Γ𝑛−1,𝑛−1,

{𝑛− 1, 0} = {0, 𝑛− 1} =
𝑛(𝑛+ 1)

2
= dim Γ𝑛−1,0

For 𝑝→ 1 the (𝑞, 𝑝)-numbers [𝑟]𝑞,𝑝 turn into the Jackson 𝑞-numbers [𝑟)𝑞 ≡ (1− 𝑞𝑛)/(1− 𝑞).
We prove that

[𝑛,𝑚]𝑞,1 = 𝑞−(𝑛+𝑚) [𝑛+𝑚+ 2)𝑞[𝑛+ 1)𝑞[𝑚+ 1)𝑞
[2]𝑞

,

[𝑛,𝑚]𝑞,1 = 𝑞−2𝑛
[𝑛+ 1)2𝑞[2(𝑛+ 1))𝑞

[2]𝑞
,

[𝑛− 1, 0]𝑞,1 =
𝑞−𝑛[𝑛)𝑞[𝑛+ 1)𝑞

[2]𝑞
.
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Some properties of generelized hypergeometric Appell

polynomials
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In [1], P.Appell presented the sequence of polynomials {𝐴𝑛(𝑥)}, 𝑛 = 0, 1, 2, . . . which satisfies
the following relation

𝐴′
𝑛(𝑥) = 𝑛𝐴𝑛−1(𝑥),

and possesses the exponential generating function

𝐴(𝑡)𝑒𝑥𝑡 =
∞∑︁
𝑛=0

𝐴𝑛(𝑥)
𝑡𝑛

𝑛!
,

where 𝐴(𝑡) is a formal power series

𝐴(𝑡) = 𝑎0 + 𝑎1𝑡+ 𝑎2
𝑡2

2!
+ · · ·+ 𝑎𝑛

𝑡𝑛

𝑛!
+ · · · , 𝑎0 ̸= 0.

The Appell type polynomials appear at the different areas of mathematics, namely, at
special functions, general algebra, combinatorics and number theory. Resently, the Appell type
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polynomials are of big interest. New approaches based on the determinant method and Pascal
matrix method are applied (see, e.g., [2]–[3]).

Monomials 𝑥𝑛, Bernoulli polynomials, Euler polynomials and Hermite polynomials are the
examples of the Appell type polynomials ([4]).

Definition. Let us

∆(𝑘,−𝑛) = −𝑛
𝑘
,−𝑛− 1

𝑘
, · · · ,−𝑛− 𝑘 + 1

𝑘
, 𝑘, 𝑛 ∈ Z.

Then polynomials 𝐴(𝑘)
𝑛 (𝑚,𝑥), 𝑛 = 0, 1, 2, . . . where

𝐴(𝑘)
𝑛 (𝑥) = 𝑥𝑛𝑘+𝑝𝐹𝑞

[︂
∆(𝑘,−𝑛), 𝛼1, 𝛼2, . . . , 𝛼𝑝

𝛽1, 𝛽2, . . . , 𝛽𝑞

⃒⃒⃒⃒
𝑚

𝑥𝑘

]︂
,

and 𝑚, 𝑘 ∈ N0, 𝛼1, 𝛼2, . . . , 𝛼𝑝, 𝛽1, 𝛽2, . . . , 𝛽𝑝 are the arbitrary number sets, we call generalized
hypergeometric Appell polynomials.

In the case when 𝑝 = 0, 𝑞 = 0, 𝑘 := 𝑚, ℎ := (−1)𝑘

𝑘𝑘
the generelized hypergeometric Appell

polynomials 𝐴(𝑘)
𝑛 (𝑝, 𝑞;𝑥) became the Gould-Hoppers polynomials [5], and with 𝑝 = 0, 𝑞 = 0 and

𝑘 = 2 they are the well-known Hermite polynomials.

Theorem 1. Generalized hypergeometric Appell polynomials 𝐴(𝑘)
𝑛 (𝑚,𝑥) are the Appell type

polynomials.

Proof. To prove it one should replace 𝑡 ↦→ 𝑥𝑡, 𝑥 ↦→ 𝑚
𝑥𝑘 , in problem 26, p.173 [6], then the

function 𝐴(𝑡) takes a form

𝐴(𝑡) = 𝑝𝐹𝑞

[︂
𝑎1, 𝑎2, . . . , 𝑎𝑝
𝑏1, 𝑏2, . . . , 𝑏𝑞

⃒⃒⃒⃒
(−1)𝑘𝑚

𝑡𝑘

𝑘𝑘

]︂
.

�

Using the derivative properties of the composition of functions and the hypergeometric
function we obtain

Theorem 2. The following identity holds

𝑛𝑥𝑘−1
𝑝+𝑘𝐹𝑞

[︂
𝑎1, 𝑎2, . . . , 𝑎𝑝,∆(𝑘,−𝑛)

𝑏1, 𝑏2, . . . , 𝑏𝑞

⃒⃒⃒⃒
𝑚

𝑥𝑘

]︂
=

= 𝑘𝑚
𝑎1𝑎2 . . . 𝑎𝑝
𝑏1𝑏2 · · · 𝑏𝑞

∆1(𝑘,−𝑛)𝑝+𝑘𝐹𝑞

[︂
𝑎1 + 1, 𝑎2 + 1, . . . , 𝑎𝑝 + 1,∆(𝑘,−𝑛) + 1

𝑏1 + 1, 𝑏2 + 1, . . . , 𝑏𝑞 + 1

⃒⃒⃒⃒
𝑚

𝑥𝑘

]︂
+

+𝑛𝑥𝑘𝑝+𝑘𝐹𝑞

[︂
𝑎1, 𝑎2, . . . , 𝑎𝑝,∆(𝑘,−𝑛+ 1)

𝑏1, 𝑏2, . . . , 𝑏𝑞

⃒⃒⃒⃒
𝑚

𝑥𝑘

]︂
,

where

∆1(𝑘,−𝑛) =
(︁
−𝑛
𝑘

)︁
·
(︂
−𝑛− 1

𝑘

)︂
· · ·

(︂
−𝑛− 𝑘 + 1

𝑘

)︂
.

Further on, the generalized hypergeometric Appell polynomials possess the convolution type
property.

Theorem 3.
𝑛∑︁

𝑖=0

(−1)𝑖
(︂
𝑛
𝑖

)︂
𝐴

(𝑘)
𝑖 (𝑚, 0)𝐴

(𝑘)
𝑛−𝑖(𝑚, 0) = 2

𝑛
𝑘𝐴(𝑘)

𝑛 (𝑚, 0).

Proof. The proof is based on the method proposed in [7]. �
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Tensor products of indecomposable integral matrix

representations of the symmetric group of third degree

Diana Biletska, Ihor Shapochka

Let 𝑆3 be the symmetric group of third degree with generators 𝑎, 𝑏 and relations: 𝑎2 = 𝑏3 = 𝑒,
𝑏𝑎 = 𝑎𝑏2, where 𝑒 is the identity of 𝑆3. The result, which we have obtained, is based on the
classification of all non-equivalent indecomposable integral matrix representations of the group
𝑆3, obtained by L. A. Nazarova and A. V. Roiter [1]. The following representations of the
group 𝑆3 over the ring Z of rational integers presents all indecomposable integral pairwise
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