non-equivalent representations of the group S_{3} of the degree not greater then 3:

$$
\begin{gathered}
\Gamma_{1}: a \rightarrow 1, b \rightarrow 1 ; \quad \Gamma_{2}: a \rightarrow-1, b \rightarrow 1 ; \quad \Gamma_{3}: a \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), b \rightarrow\left(\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right) ; \\
\Gamma_{4}: a \rightarrow\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad b \rightarrow\left(\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right) ; \quad \Gamma_{5}: a \rightarrow\left(\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right), \quad b \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) ; \\
\Gamma_{6}: a \rightarrow\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), b \rightarrow\left(\begin{array}{rrr}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right) ; \\
\Gamma_{7}: a \rightarrow\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), b \rightarrow\left(\begin{array}{rrr}
1 & 1 & 0 \\
0 & -1 & -1 \\
0 & -1 & 0
\end{array}\right) .
\end{gathered}
$$

Theorem 1. Let Δ and Θ be an indecomposable integral representations of the group S_{3}. The tensor product $\Delta \otimes \Theta$ of the representations Δ and Θ is indecomposable if and only if one of the following conditions holds:

1) one of the representations Δ and Θ has degree 1;
2) both of the representations Δ and Θ are irreducible;
3) one of the representations Δ and Θ has degree 2 and another has degree 3 .

References

1. L. A. Nazarova and A. V. Roiter, Целочисленнье представления симметрической группи третъей степени [Integral representations of the symmetric group of third degree], Ukr. Math. J. XIV, №3 (1962), 271-288.

Contact information

Diana Biletska

Department of Algebra, Uzhhorod National University, Uzhhorod, Ukraine
Email address: biletskadiana27@gmail.com

Ihor Shapochka

Department of Algebra, Uzhhorod National University, Uzhhorod, Ukraine
Email address: ihor.shapochka@uzhnu.edu.ua
Key words and phrases. Matrix representation, tensor product

Diagonability of idempotent matrices over duo rings

Andriy Bilous

It is proved that a idempotent matrix over PT duo ring R is diagonalizable under a similarity transformation.

Definition 1. A ring R is said to be a duo ring if every its left or right ideal is two sided.
Theorem 1. Let R be a duo ring and A be an $n \times n$ idempotent matrix over R. If there exist invertible matrices P and Q such that $P A Q$ is a diagonal matrix, then there is an invertible matrix U such that $U A U^{-1}$ is a diagonal matrix.

Definition 2. A ring R is a $P T$ (projective trivial) ring if every idempotent matrix over R is similar to a diagonal matrix.

Theorem 2. Let R be a PT ring. Then any unimodular vector $\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ in R^{n} is completable (i.e. can be seen as the first row of some invertible matrix).

Definition 3. The row vector X is said to be a characteristic vector of $A \in R^{n}$ corresponding to $r \in R$ provided (1) X is a basal vector and (2) $X A=r X$.

Theorem 3. The following are equivalent for a duo ring R :
(1) Each idempotent matrix over R is diagonalizable under a similarity transformation.
(2) Each idempotent matrix over R has a characteristic vector.

Theorem 4. Let R be an $P T$ duo ring and A be an $n \times n$ idempotent matrix over R. Then
(1) There is an invertible matrix P with $P A P^{-1}=\operatorname{diag}\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ where a_{i} divides a_{i+1} for $1 \leq i \leq n-1$.
(2) If Q is another invertible matrix with $Q A Q^{-1}=\operatorname{diag}\left(b_{1}, b_{2}, \cdots, b_{n}\right)$ where b_{i} divides b_{i+1} for $1 \leq i \leq n-1$, then $b_{i}=a_{i}$ for $1 \leq i \leq n$.

References

1. M. Henriksen, On a class of regular rings that are elementary divisor rings, Arch. Math. 24 (1973), no. 1, 133-141.
2. I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math. Soc. 66 (1949), 464-491.
3. P. Menal and J. Moncasi, On regular rings with stable range 2 ,Pure Appl. Algebra. 24 (1982), no. 1, 25-40.
4. A. Steger, Diagonability of idempotent matrices, Pacific J. Math. 19 (1966), no. 3, 535-542.

Contact information

Andriy Bilous

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, Lviv, Ukraine
Email address: a.bilous1610@gmail.com
URL: http://www.iapmm.lviv.ua/
Key words and phrases. Duo ring, PT ring, idempotent matrix

Algebraic questions about a FTL physics

Enzo Bonacci

The recent proposal of a negative mass fluid to explain both the dark matter and energy [7] has renovated the interest for cosmological solutions based upon non-ordinary masses. Challenging the Λ-CDM paradigm, some fringe models are grounded on hypothetical interactions with antimatter [5] whereas others suppose the influence of faster than light (FTL) imaginary mass ([4, 6, 8]).

More than a decade ago ($[\mathbf{1}]-[3]$) we supplied an organic description of all the possible states (positive, negative and imaginary mass) subsequent to modified Lorentz's equations giving physical significance to the energetic condition $|E|<m_{0} c^{2}$. Namely, we assumed that a fermion could pass from negative energy (identified as antimatter) to positive levels (i.e., the ordinary matter) through the interval between $-m_{0} c^{2}$ and $+m_{0} c^{2}$ where it would behave like a luxon $(v=c)$ or a tachyon $(v>c)$ keeping its half-integer spin.

We wish to illustrate the algebraic questions behind a so formulated FTL physics, included a falsification test currently being assembled at CERN's Antiproton Decelerator.

