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non-equivalent representations of the group 𝑆3 of the degree not greater then 3:

Γ1 : 𝑎→ 1, 𝑏→ 1; Γ2 : 𝑎→ −1, 𝑏→ 1; Γ3 : 𝑎→
(︂

0 1
1 0

)︂
, 𝑏→

(︂
0 −1
1 −1

)︂
;

Γ4 : 𝑎→
(︂

0 1
1 0

)︂
, 𝑏→

(︂
−1 −1

1 0

)︂
; Γ5 : 𝑎→

(︂
1 1
0 −1

)︂
, 𝑏→

(︂
1 0
0 1

)︂
;

Γ6 : 𝑎→

⎛⎝1 0 0
0 0 1
0 1 0

⎞⎠ , 𝑏→

⎛⎝ 1 0 1
0 0 −1
0 1 −1

⎞⎠ ;

Γ7 : 𝑎→

⎛⎝ −1 0 0
0 0 1
0 1 0

⎞⎠ , 𝑏→

⎛⎝ 1 1 0
0 −1 −1
0 −1 0

⎞⎠ .

Theorem 1. Let ∆ and Θ be an indecomposable integral representations of the group 𝑆3.
The tensor product ∆⊗Θ of the representations ∆ and Θ is indecomposable if and only if one
of the following conditions holds:

1) one of the representations ∆ and Θ has degree 1;
2) both of the representations ∆ and Θ are irreducible;
3) one of the representations ∆ and Θ has degree 2 and another has degree 3.
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Diagonability of idempotent matrices over duo rings

Andriy Bilous

It is proved that a idempotent matrix over PT duo ring R is diagonalizable under a similarity
transformation.

Definition 1. A ring 𝑅 is said to be a duo ring if every its left or right ideal is two sided.

Theorem 1. Let 𝑅 be a duo ring and 𝐴 be an 𝑛× 𝑛 idempotent matrix over 𝑅. If there
exist invertible matrices 𝑃 and 𝑄 such that 𝑃𝐴𝑄 is a diagonal matrix, then there is an invertible
matrix 𝑈 such that 𝑈𝐴𝑈−1 is a diagonal matrix.

Definition 2. A ring 𝑅 is a 𝑃𝑇 (projective trivial) ring if every idempotent matrix over 𝑅
is similar to a diagonal matrix.
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Theorem 2. Let 𝑅 be a 𝑃𝑇 ring. Then any unimodular vector (𝑎1, 𝑎2, · · · , 𝑎𝑛) in 𝑅𝑛 is
completable (i.e. can be seen as the first row of some invertible matrix).

Definition 3. The row vector X is said to be a characteristic vector of 𝐴 ∈ 𝑅𝑛 corresponding
to 𝑟 ∈ 𝑅 provided (1)𝑋 is a basal vector and (2)𝑋𝐴 = 𝑟𝑋.

Theorem 3. The following are equivalent for a duo ring 𝑅:
(1) Each idempotent matrix over 𝑅 is diagonalizable under a similarity transformation.
(2) Each idempotent matrix over R has a characteristic vector.

Theorem 4. Let R be an 𝑃𝑇 duo ring and 𝐴 be an 𝑛× 𝑛 idempotent matrix over R. Then
(1) There is an invertible matrix 𝑃 with 𝑃𝐴𝑃−1 = 𝑑𝑖𝑎𝑔(𝑎1, 𝑎2, · · · , 𝑎𝑛) where 𝑎𝑖 divides

𝑎𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛− 1.
(2) If 𝑄 is another invertible matrix with 𝑄𝐴𝑄−1 = 𝑑𝑖𝑎𝑔(𝑏1, 𝑏2, · · · , 𝑏𝑛) where 𝑏𝑖 divides

𝑏𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛− 1, then 𝑏𝑖 = 𝑎𝑖 for 1 ≤ 𝑖 ≤ 𝑛.
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Algebraic questions about a FTL physics

Enzo Bonacci

The recent proposal of a negative mass fluid to explain both the dark matter and energy [7] has
renovated the interest for cosmological solutions based upon non-ordinary masses. Challenging
the Λ-CDM paradigm, some fringe models are grounded on hypothetical interactions with
antimatter [5] whereas others suppose the influence of faster than light (FTL) imaginary mass
([4, 6, 8]).

More than a decade ago ([1] — [3]) we supplied an organic description of all the possible
states (positive, negative and imaginary mass) subsequent to modified Lorentz’s equations giving
physical significance to the energetic condition |𝐸| < 𝑚0𝑐

2. Namely, we assumed that a fermion
could pass from negative energy (identified as antimatter) to positive levels (i.e., the ordinary
matter) through the interval between −𝑚0𝑐

2 and +𝑚0𝑐
2 where it would behave like a luxon

(𝑣 = 𝑐) or a tachyon (𝑣 > 𝑐) keeping its half-integer spin.
We wish to illustrate the algebraic questions behind a so formulated FTL physics, included

a falsification test currently being assembled at CERN’s Antiproton Decelerator.
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