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Rota-type operators on a commutative modular group
algebra

VICTOR BovDI, VASYL LAVER

Currently (for example, see [1, 2, 3]) the Rota-type operators on associative algebras are
actively studied. Examples of such operators are the following:

e Rota-Baxter operator of length A: f(x)f(y) = f(zf(y) + f(x)y + \xy);
e Reynolds operator: f(x)f(y) = f(zf(y) + f(x)y — f(x)[(y));

o Nijenhuis operator: £(x)f(y) = f(xf(y) + f@)y — f(9));

e Average operator: f(z)f(y) = f(xf(y)).

All such Rota-type operators were considered on algebras over the field of characteristic 0.

We present Rota-type operators on the group algebra FG of a finite abelian 2-group G
over the field F of characteristic 2 and give some constructions of such operators for arbitrary
characteristic p > 2 (see [4]). While solving this problem the GAP System of computational
algebra [5] was actively used.
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On Leibniz algebras with two types of subalgebras

VASYL CHUPORDIA

Let L be an algebra over a field F with the binary operations + and [, |. Then L is called a
Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies the (left) Leibniz identity
[a,8] ] = [a, b, c]] — [b,[a, ]}, for all a,b,c € L.
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Leibniz algebras whose subalgebras are ideals were described in [1]. Let L be a Leibniz
algebra and A be a subalgebra of L. There are two ideals connected with A: AY = (N ,c;o; [
and Corep(A) = 3 5,4z 1. The ideal A” is least ideal of L including A. Corer(A) is the
greatest ideal of L which is contained in A. A subalgebra A of L is called an contraideal of L, if
AL = L. A subalgebra A of L is called core-free in L if Corer(A) = (0). From the definition it
follows that the contraideals and core-free subalgebras are natural antipodes to the concepts of
ideals. Leibniz algebras whose subalgebras are either ideals or contraideals were described in
[2]. It was considered the next natural case — Leibniz algebras whose subalgebras are either
ideals or core-free.

The intersection of all non-zero ideals of L is called monolith of L and denote Mon(L). If
Mon(L) # (0) then L is said to be monolithic.

THEOREM 1. Let L be a Leibniz algebra, whose subalgebras are either ideals or core-free. If
L is not Lie algebra and not all subalgebras are ideals then L is monolithic and it has one of the
following types
(1) if ((L) # (0) then Mon(L) =((L) = Fz, L =>3,.,C; + B, where
(a) C; — abelian core-free subalgebra and (3,.; Ci + ((L)) /¢(L) is abelian;
(b) B is an ideal in L, ((L) < B, [b,b] #0, for allb € B\ (Leib(L) U((L));
(c) [B,Ci],[Ci, B] < ((L) for alli€ I;
(2) if (L) = (0) then Mon(L) = ~3(L) # (0) — abelian ideal and L is metabelian.
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Classification of finite semigroups for which the inverse
monoid of local automorphisms is a A-semigroup

VOLODYMYR DERECH

A local automorphism of the semigroup S is defined as an isomorphism between two
subsemigroups of this semigroup. The set of all local automorphisms of the semigroup S with
respect to the ordinary operation of composition of binary relations forms an inverse monoid
of local automorphisms. We denote this monoid by LAut(S). Next, a semigroup S is called
congruence-permutable if £ on =n o for any pair of congruences £, 7 on S. A semigroup S is
called a A-semigroup if the lattice of its congruences forms a chain relative to the inclusion. It
is obvious that any A-semigroup is congruence-permutable. A semigroup each element of which
is an idempotent is called a band. A semigroup S with zero is called a nilsemigroup if, for any
x € S, there exists a natural number n such that z" = 0.
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