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Rota-type operators on a commutative modular group

algebra

Victor Bovdi, Vasyl Laver

Currently (for example, see [1, 2, 3]) the Rota-type operators on associative algebras are
actively studied. Examples of such operators are the following:

∙ Rota-Baxter operator of length 𝜆: 𝑓(𝑥)𝑓(𝑦) = 𝑓(𝑥𝑓(𝑦) + 𝑓(𝑥)𝑦 + 𝜆𝑥𝑦);
∙ Reynolds operator: 𝑓(𝑥)𝑓(𝑦) = 𝑓(𝑥𝑓(𝑦) + 𝑓(𝑥)𝑦 − 𝑓(𝑥)𝑓(𝑦));
∙ Nijenhuis operator: 𝑓(𝑥)𝑓(𝑦) = 𝑓(𝑥𝑓(𝑦) + 𝑓(𝑥)𝑦 − 𝑓(𝑥𝑦));
∙ Average operator: 𝑓(𝑥)𝑓(𝑦) = 𝑓(𝑥𝑓(𝑦)).

All such Rota-type operators were considered on algebras over the field of characteristic 0.
We present Rota-type operators on the group algebra F𝐺 of a finite abelian 2-group 𝐺

over the field F of characteristic 2 and give some constructions of such operators for arbitrary
characteristic 𝑝 ≥ 2 (see [4]). While solving this problem the GAP System of computational
algebra [5] was actively used.
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On Leibniz algebras with two types of subalgebras

Vasyl Chupordia

Let 𝐿 be an algebra over a field F with the binary operations + and [ , ]. Then 𝐿 is called a
Leibniz algebra (more precisely a left Leibniz algebra) if it satisfies the (left) Leibniz identity
[[𝑎, 𝑏] , 𝑐] = [𝑎, [𝑏, 𝑐]]− [𝑏, [𝑎, 𝑐]], for all 𝑎, 𝑏, 𝑐 ∈ 𝐿.
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Leibniz algebras whose subalgebras are ideals were described in [1]. Let 𝐿 be a Leibniz
algebra and 𝐴 be a subalgebra of 𝐿. There are two ideals connected with 𝐴: 𝐴𝐿 =

⋂︀
𝐴⊆𝐼E𝐿 𝐼

and 𝐶𝑜𝑟𝑒𝐿(𝐴) =
∑︀

𝐴⊇𝐼E𝐿 𝐼. The ideal 𝐴𝐿 is least ideal of 𝐿 including 𝐴. 𝐶𝑜𝑟𝑒𝐿(𝐴) is the
greatest ideal of 𝐿 which is contained in 𝐴. A subalgebra 𝐴 of 𝐿 is called an contraideal of 𝐿, if
𝐴𝐿 = 𝐿. A subalgebra 𝐴 of 𝐿 is called core-free in 𝐿 if 𝐶𝑜𝑟𝑒𝐿(𝐴) = ⟨0⟩. From the definition it
follows that the contraideals and core-free subalgebras are natural antipodes to the concepts of
ideals. Leibniz algebras whose subalgebras are either ideals or contraideals were described in
[2]. It was considered the next natural case – Leibniz algebras whose subalgebras are either
ideals or core-free.

The intersection of all non-zero ideals of 𝐿 is called monolith of 𝐿 and denote 𝑀𝑜𝑛(𝐿). If
𝑀𝑜𝑛(𝐿) ̸= ⟨0⟩ then 𝐿 is said to be monolithic.

Theorem 1. Let 𝐿 be a Leibniz algebra, whose subalgebras are either ideals or core-free. If
𝐿 is not Lie algebra and not all subalgebras are ideals then 𝐿 is monolithic and it has one of the
following types

(1) if 𝜁(𝐿) ̸= ⟨0⟩ then 𝑀𝑜𝑛(𝐿) = 𝜁(𝐿) = 𝐹𝑧, 𝐿 =
∑︀

𝑖∈𝐼 𝐶𝑖 +𝐵, where
(a) 𝐶𝑖 – abelian core-free subalgebra and

(︀∑︀
𝑖∈𝐼 𝐶𝑖 + 𝜁(𝐿)

)︀
/𝜁(𝐿) is abelian;

(b) 𝐵 is an ideal in 𝐿, 𝜁(𝐿) ≤ 𝐵, [𝑏, 𝑏] ̸= 0, for all 𝑏 ∈ 𝐵 ∖ (𝐿𝑒𝑖𝑏(𝐿) ∪ 𝜁(𝐿));
(c) [𝐵,𝐶𝑖] , [𝐶𝑖, 𝐵] ≤ 𝜁(𝐿) for all 𝑖 ∈ 𝐼;

(2) if 𝜁(𝐿) = ⟨0⟩ then 𝑀𝑜𝑛(𝐿) = 𝛾3(𝐿) ̸= ⟨0⟩ – abelian ideal and 𝐿 is metabelian.
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Classification of finite semigroups for which the inverse

monoid of local automorphisms is a Δ-semigroup

Volodymyr Derech

A local automorphism of the semigroup 𝑆 is defined as an isomorphism between two
subsemigroups of this semigroup. The set of all local automorphisms of the semigroup 𝑆 with
respect to the ordinary operation of composition of binary relations forms an inverse monoid
of local automorphisms. We denote this monoid by 𝐿𝐴𝑢𝑡(𝑆). Next, a semigroup 𝑆 is called
congruence-permutable if 𝜉 ∘ 𝜂 = 𝜂 ∘ 𝜉 for any pair of congruences 𝜉, 𝜂 on 𝑆. A semigroup 𝑆 is
called a ∆-semigroup if the lattice of its congruences forms a chain relative to the inclusion. It
is obvious that any ∆-semigroup is congruence-permutable. A semigroup each element of which
is an idempotent is called a band. A semigroup 𝑆 with zero is called a nilsemigroup if, for any
𝑥 ∈ 𝑆, there exists a natural number 𝑛 such that 𝑥𝑛 = 0.
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