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Leibniz algebras whose subalgebras are ideals were described in [1]. Let 𝐿 be a Leibniz
algebra and 𝐴 be a subalgebra of 𝐿. There are two ideals connected with 𝐴: 𝐴𝐿 =

⋂︀
𝐴⊆𝐼E𝐿 𝐼

and 𝐶𝑜𝑟𝑒𝐿(𝐴) =
∑︀

𝐴⊇𝐼E𝐿 𝐼. The ideal 𝐴𝐿 is least ideal of 𝐿 including 𝐴. 𝐶𝑜𝑟𝑒𝐿(𝐴) is the
greatest ideal of 𝐿 which is contained in 𝐴. A subalgebra 𝐴 of 𝐿 is called an contraideal of 𝐿, if
𝐴𝐿 = 𝐿. A subalgebra 𝐴 of 𝐿 is called core-free in 𝐿 if 𝐶𝑜𝑟𝑒𝐿(𝐴) = ⟨0⟩. From the definition it
follows that the contraideals and core-free subalgebras are natural antipodes to the concepts of
ideals. Leibniz algebras whose subalgebras are either ideals or contraideals were described in
[2]. It was considered the next natural case – Leibniz algebras whose subalgebras are either
ideals or core-free.

The intersection of all non-zero ideals of 𝐿 is called monolith of 𝐿 and denote 𝑀𝑜𝑛(𝐿). If
𝑀𝑜𝑛(𝐿) ̸= ⟨0⟩ then 𝐿 is said to be monolithic.

Theorem 1. Let 𝐿 be a Leibniz algebra, whose subalgebras are either ideals or core-free. If
𝐿 is not Lie algebra and not all subalgebras are ideals then 𝐿 is monolithic and it has one of the
following types

(1) if 𝜁(𝐿) ̸= ⟨0⟩ then 𝑀𝑜𝑛(𝐿) = 𝜁(𝐿) = 𝐹𝑧, 𝐿 =
∑︀

𝑖∈𝐼 𝐶𝑖 +𝐵, where
(a) 𝐶𝑖 – abelian core-free subalgebra and

(︀∑︀
𝑖∈𝐼 𝐶𝑖 + 𝜁(𝐿)

)︀
/𝜁(𝐿) is abelian;

(b) 𝐵 is an ideal in 𝐿, 𝜁(𝐿) ≤ 𝐵, [𝑏, 𝑏] ̸= 0, for all 𝑏 ∈ 𝐵 ∖ (𝐿𝑒𝑖𝑏(𝐿) ∪ 𝜁(𝐿));
(c) [𝐵,𝐶𝑖] , [𝐶𝑖, 𝐵] ≤ 𝜁(𝐿) for all 𝑖 ∈ 𝐼;

(2) if 𝜁(𝐿) = ⟨0⟩ then 𝑀𝑜𝑛(𝐿) = 𝛾3(𝐿) ̸= ⟨0⟩ – abelian ideal and 𝐿 is metabelian.
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Classification of finite semigroups for which the inverse

monoid of local automorphisms is a Δ-semigroup

Volodymyr Derech

A local automorphism of the semigroup 𝑆 is defined as an isomorphism between two
subsemigroups of this semigroup. The set of all local automorphisms of the semigroup 𝑆 with
respect to the ordinary operation of composition of binary relations forms an inverse monoid
of local automorphisms. We denote this monoid by 𝐿𝐴𝑢𝑡(𝑆). Next, a semigroup 𝑆 is called
congruence-permutable if 𝜉 ∘ 𝜂 = 𝜂 ∘ 𝜉 for any pair of congruences 𝜉, 𝜂 on 𝑆. A semigroup 𝑆 is
called a ∆-semigroup if the lattice of its congruences forms a chain relative to the inclusion. It
is obvious that any ∆-semigroup is congruence-permutable. A semigroup each element of which
is an idempotent is called a band. A semigroup 𝑆 with zero is called a nilsemigroup if, for any
𝑥 ∈ 𝑆, there exists a natural number 𝑛 such that 𝑥𝑛 = 0.
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Theorem 1 (see [1], proposition 3). Let 𝑆 be a finite semigroup. If the inverse monoid
of local automorphisms 𝐿𝐴𝑢𝑡(𝑆) is a congruence-permutable, then the semigroup 𝑆 is either a
group or a nilsemigroup, or a band.

Theorem 2. Let 𝑆 be a finite band or a finite nilsemigroup. The following statements are
equivalent:

(a) 𝐿𝐴𝑢𝑡(𝑆) is a congruence-permutable inverse semigroup;
(b) 𝐿𝐴𝑢𝑡(𝑆) is a ∆-semigroup.

The following theorem was proved in [2].

Theorem 3. Let 𝑆 be a finite band. The inverse monoid 𝐿𝐴𝑢𝑡(𝑆) is a congruence-permutable
if and only if 𝑆 is:

(1) either a linearly ordered semilattice;
(2) or a primitive semilattice;
(3) or a semigroup of right zeros;
(4) or a semigroup of left zeros.

A finite nilsemigroups for which the inverse monoid of local automorphisms is a congruence-
permutable semigroup describe in [3].

Theorem 4. Let 𝐺 be a finite group. The inverse monoid 𝐿𝐴𝑢𝑡(𝐺) is a ∆-semigroup if
and only if 𝐺 is:

(1) either a group of prime order 𝑝, where 𝑝− 1 = 2𝑘 for some nonnegative integer 𝑘;
(2) or an elementary Abelian 2-group of order 2𝑛, where 𝑛 ≥ 2.

References
1. V. Derech, Complete classifiction of finite semigroups for which the inverse monoid of local automorphisms is

a permutal semigroup, Ukr. Mat. Zh. 68(2016), no. 11, 1571-1578.
2. V. Derech, Structure of a finite commutative inverse semigroup and a finite band for which the inverse monoid

of local automorphisms is permutable, Ukr. Mat. Zh. 63(2011), no. 9, 1218-1226.
3. V. Derech, Classification of finite nilsemigroups for which the inverse monoid of local automorphisms is

permutable semigroup, Ukr. Mat. Zh. 68(2016), no. 5, 610-624.

Contact information

Volodymyr Derech
Department of Mathematics, Vinnytsia National Technical University, Vinnytsia, Ukraine
Email address : derechvd@gmail.com

Key words and phrases. Inverse monoid of local automorphisms of a finite semigroup; ∆-se-
migroup; congruence-permutable semigroup

On conditions for the Brandt semigroup to be non

isomorphic to the variant

Oleksandra Desiateryk

Proposition 1. Let a variant (𝑆, *𝑎) be isomorphic to the Brandt semigroup. Then the
semigroup 𝑆 is 0-simple.

Since we are interested in semigroups isomorphic to Brandt semigroup let us further consider
the 𝑆 as a 0-simple semigroup.
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