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Corollary 1. Transforming matrices 𝑈 and 𝑉 from (2) have the following upper unitrian-
gular form

𝑈 =

[︃
𝐼 −𝑌
0 𝐼

]︃
, 𝑉 =

[︃
𝐼 −𝑋
0 𝐼

]︃
,

where matrices 𝑋 and 𝑌 have the same triangular form as matrices 𝐴,𝐵 and 𝐶 if and only if
(𝑎𝑖𝑖, 𝑏𝑖𝑖)|𝑐𝑖𝑖 for all 𝑖 = 1, 2, . . . , 𝑛.
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Some notes on orthogonality

Iryna Fryz

A tuple of 𝑛-ary operations 𝑓1, . . . , 𝑓𝑘 (𝑛 ≥ 2, 𝑘 ≤ 𝑛) defined on a set 𝑄 (𝑚 := |𝑄|) is called
orthogonal [1], if for arbitrary 𝑏1, . . . , 𝑏𝑘 ∈ 𝑄 the system {𝑓𝑖(𝑥1, . . . , 𝑥𝑛) = 𝑏𝑖}𝑘𝑖=1 has exactly
𝑚𝑛−𝑘 solutions.

Let 𝑓 be an 𝑛-ary operation on 𝑄 and
𝛿 := {𝑖1, . . . , 𝑖𝑘} ⊂ 1, 𝑛 := {1, . . . , 𝑛}, {𝑗1, . . . , 𝑗𝑛−𝑘} := 1, 𝑛 ∖𝛿, �̄� := (𝑎𝑗1 , . . . , 𝑎𝑗𝑛−𝑘

).

An operation 𝑓(�̄�,𝛿) which is defined by
𝑓(�̄�,𝛿)(𝑥𝑖1 , . . . , 𝑥𝑖𝑘) := 𝑓(𝑦1, . . . , 𝑦𝑛),

where 𝑦𝑖 :=

{︂
𝑥𝑖, if 𝑖 ∈ 𝛿,
𝑎𝑖, if 𝑖 ̸∈ 𝛿, is called an (�̄�, 𝛿)-retract or a 𝛿-retract of 𝑓 . Operations 𝑓1;(�̄�1,𝛿), . . . ,

𝑓𝑘;(�̄�𝑘,𝛿) are called similar 𝛿-retracts of 𝑛-ary operations 𝑓1, . . . , 𝑓𝑘, if �̄�1 = · · · = �̄�𝑘. A 𝑘-tuple
of 𝑛-ary operations is called 𝛿-retractly orthogonal [4], if all tuples of similar 𝛿-retracts of these
operations are orthogonal.

The notion of perpendicularity of the maximal type from [3] can be defined using the
definition of retract orthogonality: 𝑛-ary operations 𝑔 and ℎ are called perpendicular of the
type (𝜄, 𝜄;𝑚), if they are 𝛿-retractly orthogonal for all 𝛿 such that |𝛿| = 2 i 𝑚 ∈ 𝛿. The results
from [5] imply the following statement.

Proposition 1. If 𝑛-ary operations 𝑔 and ℎ are perpendicular of the type (𝜄, 𝜄;𝑚), 𝑚 ∈ 1, 𝑛,
then they are 𝛿-retractly orthogonal for all 𝛿 ⊂ 1, 𝑛, where |𝛿| > 1 and 𝑚 ∈ 𝛿.

The relationships between retract orthogonality and strong orthogonality was described by
G.B. Belyavskaya and G.L. Mullen [2] and the relationships between retract orthogonality and
orthogonality was studied in [5].
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Proposition 2. Let 𝑔 and ℎ be 𝑛-ary quasigroups. The following statements are equivalent:
(1) 𝑔 and ℎ are strongly orthogonal;
(2) 𝑔 and ℎ are perpendicular of the type (𝜄, 𝜄;𝑚) for all 𝑚 ∈ 1, 𝑛;
(3) 𝑔 and ℎ are 𝛿-retractly orthogonal for all 𝛿 ⊂ 1, 𝑛;
(4) for an arbitrary 𝑚 ∈ 1, 𝑛 operation 𝑔 ⊕

𝑚
ℎ is invertible, where

(𝑔 ⊕
𝑚
ℎ)(𝑥1, . . . , 𝑥𝑛) := 𝑔(𝑥1, . . . , 𝑥𝑚−1, ℎ(𝑥1, . . . , 𝑥𝑛), 𝑥𝑚+1, . . . , 𝑥𝑛).
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Diagonal reduction of matrices over commutative

semihereditary Bezout rings

Andrii Gatalevych

All rings considered will be commutative and have identity. Recently there has been some
interest in the polynomial ring 𝑅[𝑥], where 𝑅 is a von Neumann regular ring. Such a ring is a
Bezout ring, semihereditary ring, and so Hermite ring. Thus, it is natural to ask whether or not
𝑅[𝑥] is an elementary divisor ring. This question is answered affirmative in [3]. It is an open
problem whether or not every Bezout domain is an elementary divisor ring and more generally:
whether or not every semihereditary Bezout ring is an elementary divisor ring.

We obtain a complete characterization of semihereditary elementary divisor ring through its
homomorphic images.

Mc Adam S. and Swan R. G. studied comaximal factorization in commutative rings [2].
Following them, we give the following definitions.

Definition 1. A nonzero element 𝑎 of a ring 𝑅 is called inpseudo-irreducible if for any
representation 𝑎 = 𝑏 · 𝑐 we have 𝑏𝑅 + 𝑐𝑅 = 𝑅.

Definition 2. An element 𝑎 of a ring 𝑅 is called pseudo-irreducible if for any representation
𝑎 = 𝑏 · 𝑐, where 𝑏, 𝑐 /∈ 𝑈(𝑅), we have 𝑏𝑅 + 𝑐𝑅 ̸= 𝑅.

Other definitions can be found in the articles [1, 4].

Theorem 1. Let 𝑅 be a Bezout ring of stable range 2. A regular element 𝑎 ∈ 𝑅 is
inpseudo-irreducible iff 𝑅/𝑎𝑅 is a von Neumann regular ring.
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