COROLLARY 1. Transforming matrices U and V from (2) have the following upper unitriangular form

$$U = \left[\begin{array}{cc} I & -Y \\ 0 & I \end{array} \right], V = \left[\begin{array}{cc} I & -X \\ 0 & I \end{array} \right],$$

where matrices X and Y have the same triangular form as matrices A, B and C if and only if $(a_{ii}, b_{ii})|c_{ii}$ for all i = 1, 2, ..., n.

References

- 1. W.E. Roth, The equations AX YB = C and AX XB = C in matrices, Proc. Amer. Math. Soc. (1952), no. 3, 392-396.
- Y. Tian, Completing triangular block matrices with maximal and minimal ranks, Linear Algebra Appl. 321 (2000), 327-345.

CONTACT INFORMATION

Nataliia Dzhaliuk

Department of Algebra, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine, L'viv, Ukraine *Email address*: nataliya.dzhalyuk@gmail.com

Key words and phrases. The Sylvester matrix equation, linear matrix equation, solution, triangular matrix

Some notes on orthogonality

Iryna Fryz

A tuple of *n*-ary operations f_1, \ldots, f_k $(n \ge 2, k \le n)$ defined on a set Q (m := |Q|) is called orthogonal [1], if for arbitrary $b_1, \ldots, b_k \in Q$ the system $\{f_i(x_1, \ldots, x_n) = b_i\}_{i=1}^k$ has exactly m^{n-k} solutions.

Let f be an n-ary operation on Q and

$$\delta := \{i_1, \dots, i_k\} \subset \overline{1, n} := \{1, \dots, n\}, \quad \{j_1, \dots, j_{n-k}\} := \overline{1, n} \setminus \delta, \quad \overline{a} := (a_{j_1}, \dots, a_{j_{n-k}}).$$

An operation $f_{(\bar{a},\delta)}$ which is defined by

$$f_{(\bar{a},\delta)}(x_{i_1},\ldots,x_{i_k}) := f(y_1,\ldots,y_n)$$

where $y_i := \begin{cases} x_i, \text{ if } i \in \delta, \\ a_i, \text{ if } i \notin \delta, \end{cases}$ is called an (\bar{a}, δ) -retract or a δ -retract of f. Operations $f_{1;(\bar{a}_1,\delta)}, \ldots, f_{k;(\bar{a}_k,\delta)}$ are called similar δ -retracts of n-ary operations f_1, \ldots, f_k , if $\bar{a}_1 = \cdots = \bar{a}_k$. A k-tuple of n-ary operations is called δ -retractly orthogonal [4], if all tuples of similar δ -retracts of these operations are orthogonal.

The notion of perpendicularity of the maximal type from [3] can be defined using the definition of retract orthogonality: *n*-ary operations *g* and *h* are called *perpendicular of the* type $(\iota, \iota; m)$, if they are δ -retractly orthogonal for all δ such that $|\delta| = 2$ i $m \in \delta$. The results from [5] imply the following statement.

PROPOSITION 1. If n-ary operations g and h are perpendicular of the type $(\iota, \iota; m), m \in \overline{1, n}$, then they are δ -retractly orthogonal for all $\delta \subset \overline{1, n}$, where $|\delta| > 1$ and $m \in \delta$.

The relationships between retract orthogonality and strong orthogonality was described by G.B. Belyavskaya and G.L. Mullen [2] and the relationships between retract orthogonality and orthogonality was studied in [5].

PROPOSITION 2. Let g and h be n-ary quasigroups. The following statements are equivalent:

- (1) g and h are strongly orthogonal;
- (2) g and h are perpendicular of the type $(\iota, \iota; m)$ for all $m \in \overline{1, n}$;
- (3) g and h are δ -retractly orthogonal for all $\delta \subset \overline{1,n}$;
- (4) for an arbitrary $m \in \overline{1, n}$ operation $g \bigoplus_{m} h$ is invertible, where

 $(g \bigoplus_{m} h)(x_1, \ldots, x_n) := g(x_1, \ldots, x_{m-1}, h(x_1, \ldots, x_n), x_{m+1}, \ldots, x_n).$

References

- G. Belyavskaya, G.L. Mullen, Orthogonal hypercubes and n-ary operations, Quasigroups Related Systems 13 (2005), no. 1, 73–86.
- G. Belyavskaya, G.L. Mullen, Strongly orthogonal and uniformly orthogonal many-placed operations, Algebra Discrete Math. 5 (2006), no. 1, 1–17.
- F.M. Sokhatsky, I.V. Fryz, Invertibility criterion of composition of two multiary quasigroups, Comment. Math. Univ. Carolin. 53 (2012), no. 3, 429–445.
- I.V. Fryz, F.M. Sokhatsky, Block composition algorithm for constructing orthogonal n-ary operations, Discrete Math. 340 (2017), iss. 8, 1957-1966.
- I.V. Fryz, Orthogonality and retract orthogonality of operations, Bul. Acad. Ştiinţe Repub. Mold. Mat. 1(86) (2018), 24–33.

CONTACT INFORMATION

Iryna Fryz

Vasyl' Stus Donetsk National University, Vinnytsia, Ukraine Email address: iryna.fryz@ukr.net

Key words and phrases. Orthogonality, perpendicularity, strong orthogonality

Diagonal reduction of matrices over commutative semihereditary Bezout rings

Andrii Gatalevych

All rings considered will be commutative and have identity. Recently there has been some interest in the polynomial ring R[x], where R is a von Neumann regular ring. Such a ring is a Bezout ring, semihereditary ring, and so Hermite ring. Thus, it is natural to ask whether or not R[x] is an elementary divisor ring. This question is answered affirmative in [3]. It is an open problem whether or not every Bezout domain is an elementary divisor ring and more generally: whether or not every semihereditary Bezout ring is an elementary divisor ring.

We obtain a complete characterization of semihereditary elementary divisor ring through its homomorphic images.

Mc Adam S. and Swan R. G. studied comaximal factorization in commutative rings [2]. Following them, we give the following definitions.

DEFINITION 1. A nonzero element a of a ring R is called inpseudo-irreducible if for any representation $a = b \cdot c$ we have bR + cR = R.

DEFINITION 2. An element a of a ring R is called pseudo-irreducible if for any representation $a = b \cdot c$, where $b, c \notin U(R)$, we have $bR + cR \neq R$.

Other definitions can be found in the articles [1, 4].

THEOREM 1. Let R be a Bezout ring of stable range 2. A regular element $a \in R$ is inpseudo-irreducible iff R/aR is a von Neumann regular ring.