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On some combinatorial identities involving the Horadam
numbers

TARAS GOY

In [5, 6], Horadam defined generalized Fibonacci numbers {w,(a,b;p, q)}, or briefly {w,},
which satisfy the second-order homogeneous linear recurrence relation

Wy = PWp_1 — QWp_2, N = 2a (1)
where wy = a, wy = b and a, b, p, ¢ are integers.

This sequence generalizes many number sequences, such as Fibonacci, Lucas, Pell, Jacobsthal
sequences, among others.

We study some families of Toeplitz-Hessenberg determinants the entries of which are Horadam
numbers. These determinant formulas may also be rewritten as identities involving sums of
products of the Horadam numbers and multinomial coefficients.

Let € = a?q—abp+b?, |s| = s1+sa++ -+ 5p, 0p = 51 +289+ - - +ns,, and p,(s) = W
denotes the multinomial coefficient.

THEOREM 1. For alln > 2, the following formulas fold
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where the summation is over integers s; > 0 satisfying s, + 2s9 + -+ +ns, = n.

These identities generalize some identities which we have obtained in [1-4].
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On co-nilpotency of finite groups

VIKTORIA A. GRITSKOVA (KOVALEVA)

All considered groups are finite and G always denotes a finite group. The symbol 7(G)
denotes the set of all primes dividing the order of G. Two groups A and B are called isoordic if
4] = |BI.

Let o be some partition of the set of all primes PP, that is, o = {o;|i € I}, where P = |J,, o;
and 0; No; = for all ¢ # j, and we put, following [5], 0(G) = {o;|o; N7(G) # 0}. G is said to
be: a-primary [5] if G is a o;-group for some i; o-decomposable (Shemetkov [4]) or o-nilpotent
(Guo and Skiba [1]) if G = G x - -+ x G,, for some o-primary groups G1,...,G,.

A subgroup A of G is called o-subnormal in G [5] if it is M, -subnormal in G in the sense of
Kegel 2], that is, there is a subgroup chain

A=A <A < <A, =G

such that either A; 1 < A; or A;/(A;_1)a, is o-primary for all i = 1,...,n. We use i,(G) to
denote the number of classes of isoordic non-o-subnormal subgroups of G.

We study the structure of G’ depending on the invariant i,(G). In particular, we obtained the
conditions of o-nilpotency of G with restrictions on i,(G). For example, the following theorem
was proved.

THEOREM. |3, Theorem 1.7] If i,(G) < |o(G)| — 2, then G is o-nilpotent.

Note that Theorem is a corollary of the more general result [3, Theorem 1.2|.
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