- A. F. Horadam, Basic properties of a certain generalized sequence of numbers, Fibonacci Quart. 3 (1965), no. 3, 161–176.
- A. F. Horadam, Generating functions for powers of a certain generalized sequence of numbers, Duke Math. J. 32 (1965), no. 3, 437–446.

CONTACT INFORMATION

Taras Goy

Faculty of Mathematics and Computer Science, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine Email address: tarasgoy@yahoo.com

Key words and phrases. Horadam numbers, Horadam sequence, Toeplitz-Hessenberg determinant, multinomial coefficient

On σ -nilpotency of finite groups

VIKTORIA A. GRITSKOVA (KOVALEVA)

All considered groups are finite and G always denotes a finite group. The symbol $\pi(G)$ denotes the set of all primes dividing the order of G. Two groups A and B are called *isoordic* if |A| = |B|.

Let σ be some partition of the set of all primes \mathbb{P} , that is, $\sigma = \{\sigma_i | i \in I\}$, where $\mathbb{P} = \bigcup_{i \in I} \sigma_i$ and $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$, and we put, following [5], $\sigma(G) = \{\sigma_i | \sigma_i \cap \pi(G) \neq \emptyset\}$. G is said to be: σ -primary [5] if G is a σ_i -group for some i; σ -decomposable (Shemetkov [4]) or σ -nilpotent (Guo and Skiba [1]) if $G = G_1 \times \cdots \times G_n$ for some σ -primary groups G_1, \ldots, G_n .

A subgroup A of G is called σ -subnormal in G [5] if it is \mathfrak{N}_{σ} -subnormal in G in the sense of Kegel [2], that is, there is a subgroup chain

$$A = A_0 \le A_1 \le \dots \le A_n = G$$

such that either $A_{i-1} \leq A_i$ or $A_i/(A_{i-1})_{A_i}$ is σ -primary for all $i = 1, \ldots, n$. We use $i_{\sigma}(G)$ to denote the number of classes of isoordic non- σ -subnormal subgroups of G.

We study the structure of G depending on the invariant $i_{\sigma}(G)$. In particular, we obtained the conditions of σ -nilpotency of G with restrictions on $i_{\sigma}(G)$. For example, the following theorem was proved.

THEOREM. [3, Theorem 1.7] If $i_{\sigma}(G) \leq |\sigma(G)| - 2$, then G is σ -nilpotent.

Note that Theorem is a corollary of the more general result [3, Theorem 1.2].

References

- W. Guo, A.N. Skiba, Finite groups with permutable complete Wielandt sets of subgroups, J. Group Theory 18 (2015), 191–200.
- O.H. Kegel, Untergruppenverbande endlicher Gruppen, die den subnormalteilerverband each enthalten, Arch. Math. 30 (1978), no. 3, 225–228.
- 3. V.A. Kovaleva, A criterion for a finite group to be σ -soluble, Comm. in Algebra 46 (2018), no. 12, 5410–5415.
- 4. L.A. Shemetkov, *Formations of finite groups*, Nauka, Main Editorial Board for Physical and Mathematical Literature, Moscow, USSR, 1978 (in Russian).
- 5. A.N. Skiba, On σ -subnormal and σ -permutable subgroups of finite groups, J. Algebra 436 (2015), 1–16.

CONTACT INFORMATION

Viktoria A. Gritskova (Kovaleva)

Department of Mathematics and Technologies of Programming, Francisk Skorina Gomel State University, Gomel, Belarus

Email address: vika.kovalyova@rambler.ru

Key words and phrases. Finite group, isoordic groups, σ -nilpotent group, σ -subnormal subgroup.

Necessary and sufficient condition for the existence of one-point time on an oriented set

YAROSLAV IVANOVICH GRUSHKA

DEFINITION 1. The ordered pair $\mathcal{M} = \left(\mathfrak{Bs}(\mathcal{M}), \underset{\mathcal{M}}{\leftarrow}\right)$ is called an **oriented set** if and only if $\mathfrak{Bs}(\mathcal{M})$ is some non-empty set $(\mathfrak{Bs}(\mathcal{M}) \neq \emptyset)$ and $\underset{\mathcal{M}}{\leftarrow}$ is arbitrary reflexive binary relation on $\mathfrak{Bs}(\mathcal{M})$. In this case the set $\mathfrak{Bs}(\mathcal{M})$ is named the **basic** set or the set of all **elementary states** of the oriented set \mathcal{M} and the relation $\leftarrow_{\mathcal{M}}$ is named by the **directing relation of changes**

(transformations) of \mathcal{M} .

In the case where the oriented set \mathcal{M} is known in advance, the char \mathcal{M} in the notation $\leftarrow_{\mathcal{M}}$ will be released, and we will use the notation \leftarrow instead. From an intuitive point of view, oriented sets may be interpreted as the most primitive models of sets of evolving objects.

DEFINITION 2. Let \mathcal{M} be an oriented set and $\mathbb{T} = (\mathbf{T}, \leq)$ be a linearly ordered set. A mapping $\psi : \mathbf{T} \mapsto 2^{\mathfrak{Bs}(\mathcal{M})}$ is referred to as **time** on \mathcal{M} if the following conditions are satisfied:

- **1.** For any elementary state $x \in \mathfrak{Bs}(\mathcal{M})$ there exists an element $t \in \mathbf{T}$ such that $x \in \psi(t)$.
 - **2.** If $x_1, x_2 \in \mathfrak{Bs}(\mathcal{M}), x_2 \leftarrow x_1$ and $x_1 \neq x_2$, then there exist elements $t_1, t_2 \in \mathbf{T}$ such that $x_1 \in \psi(t_1), x_2 \in \psi(t_2)$ and $t_1 < t_2$ (this means that there is a temporal separateness of successive unequal elementary states).

In this case the elements $t \in \mathbf{T}$ we call the **moments of time**.

It turns out that any oriented set \mathcal{M} can be chronologized (that is we can define some time on it). To make sure this we may consider any linearly ordered set $\mathbb{T} = (\mathbf{T}, \leq)$, which contains at least two elements (card(T) ≥ 2) and put, $\psi(t) := \mathfrak{Bs}(\mathcal{M}), t \in T$.

DEFINITION 3. Let \mathcal{M} be an oriented set.

- **a.** The time $\psi : \mathbf{T} \mapsto 2^{\mathfrak{Bs}(\mathcal{M})}$ is called by **quasi one-point** if for any $t \in \mathbf{T}$ the set $\psi(t)$ is a singleton.
- **b.** The time ψ is called **one-point** if the following conditions are satisfied:
 - (a) the time ψ is quasi one-point;

(b) for every $x_1, x_2 \in \mathfrak{Bs}(\mathcal{M})$ the conditions $x_1 \in \psi(t_1), x_2 \in \psi(t_2)$ and $t_1 \leq t_2$, assure the correlation $x_2 \leftarrow x_1$.

EXAMPLE 1. Let us consider an arbitrary mapping $f : \mathbb{R} \to \mathbb{R}^d$ $(d \in \mathbb{N})$. This mapping can be interpreted as equation of motion of a single material point in the space \mathbb{R}^d . The mapping fgenerates the oriented set $\mathcal{M}_f = \left(\mathfrak{Bs}\left(\mathcal{M}_f\right), \underset{\mathcal{M}_f}{\leftarrow}\right)$, where $\mathfrak{Bs}\left(\mathcal{M}_f\right) = \mathcal{R}(f) = \{f(t) \mid t \in \mathbb{R}\} \subseteq \mathbb{R}^d$ and for $x, y \in \mathfrak{Bs}(\mathcal{M})$ the correlation $y \underset{\mathcal{M}_f}{\leftarrow} x$ holds if and only if there exist $t_1, t_2 \in \mathbb{R}$ such,